Python tensorflow.zeros_initializer() Examples
The following are 30
code examples of tensorflow.zeros_initializer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: nn_module.py From tensorflow-XNN with MIT License | 6 votes |
def _resnet_branch_mode1(x, hidden_units, dropouts, training, seed=0): h1, h2, h3 = hidden_units dr1, dr2, dr3 = dropouts # branch 2 x2 = tf.layers.Dense(h1, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 2), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x) x2 = tf.layers.BatchNormalization()(x2) x2 = tf.nn.relu(x2) x2 = tf.layers.Dropout(dr1, seed=seed * 1)(x2, training=training) if dr1 > 0 else x2 x2 = tf.layers.Dense(h2, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 3), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x2) x2 = tf.layers.BatchNormalization()(x2) x2 = tf.nn.relu(x2) x2 = tf.layers.Dropout(dr2, seed=seed * 2)(x2, training=training) if dr2 > 0 else x2 x2 = tf.layers.Dense(h3, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 4), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x2) x2 = tf.layers.BatchNormalization()(x2) return x2
Example #2
Source File: resnet_model.py From benchmarks with The Unlicense | 6 votes |
def resnet_bottleneck(l, ch_out, stride, stride_first=False): shortcut = l norm_relu = lambda x: tf.nn.relu(Norm(x)) l = Conv2D('conv1', l, ch_out, 1, strides=stride if stride_first else 1, activation=norm_relu) """ Sec 5.1: We use the ResNet-50 [16] variant from [12], noting that the stride-2 convolutions are on 3×3 layers instead of on 1×1 layers """ l = Conv2D('conv2', l, ch_out, 3, strides=1 if stride_first else stride, activation=norm_relu) """ Section 5.1: For BN layers, the learnable scaling coefficient γ is initialized to be 1, except for each residual block's last BN where γ is initialized to be 0. """ l = Conv2D('conv3', l, ch_out * 4, 1, activation=lambda x: Norm(x, gamma_initializer=tf.zeros_initializer())) ret = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=lambda x: Norm(x)) return tf.nn.relu(ret, name='block_output')
Example #3
Source File: nn_module.py From tensorflow-XNN with MIT License | 6 votes |
def _dense_block_mode2(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"): """ :param x: :param hidden_units: :param dropouts: :param densenet: enable densenet :return: Ref: https://github.com/titu1994/DenseNet """ for i, (h, d) in enumerate(zip(hidden_units, dropouts)): if bn: z = batch_normalization(x, training=training, name=name + "-" + str(i)) z = tf.nn.relu(z) z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(z) if densenet: x = tf.concat([x, z], axis=-1) else: x = z return x
Example #4
Source File: svdpp.py From tf-recsys with MIT License | 6 votes |
def _create_user_terms(self, users, N): num_users = self.num_users num_items = self.num_items num_factors = self.num_factors p_u, b_u = super(SVDPP, self)._create_user_terms(users) with tf.variable_scope('user'): implicit_feedback_embeddings = tf.get_variable( name='implict_feedback_embedding', shape=[num_items, num_factors], initializer=tf.zeros_initializer(), regularizer=tf.contrib.layers.l2_regularizer(self.reg_y_u)) y_u = tf.gather( tf.nn.embedding_lookup_sparse( implicit_feedback_embeddings, N, sp_weights=None, combiner='sqrtn'), users, name='y_u' ) return p_u, b_u, y_u
Example #5
Source File: nn_module.py From tensorflow-XNN with MIT License | 6 votes |
def _dense_block_mode1(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"): """ :param x: :param hidden_units: :param dropouts: :param densenet: enable densenet :return: Ref: https://github.com/titu1994/DenseNet """ for i, (h, d) in enumerate(zip(hidden_units, dropouts)): z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x) if bn: z = batch_normalization(z, training=training, name=name+"-"+str(i)) z = tf.nn.relu(z) # z = tf.nn.selu(z) z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z if densenet: x = tf.concat([x, z], axis=-1) else: x = z return x
Example #6
Source File: lstm_ops.py From DOTA_models with Apache License 2.0 | 6 votes |
def init_state(inputs, state_shape, state_initializer=tf.zeros_initializer(), dtype=tf.float32): """Helper function to create an initial state given inputs. Args: inputs: input Tensor, at least 2D, the first dimension being batch_size state_shape: the shape of the state. state_initializer: Initializer(shape, dtype) for state Tensor. dtype: Optional dtype, needed when inputs is None. Returns: A tensors representing the initial state. """ if inputs is not None: # Handle both the dynamic shape as well as the inferred shape. inferred_batch_size = inputs.get_shape().with_rank_at_least(1)[0] dtype = inputs.dtype else: inferred_batch_size = 0 initial_state = state_initializer( [inferred_batch_size] + state_shape, dtype=dtype) return initial_state
Example #7
Source File: common_layers.py From fine-lm with MIT License | 6 votes |
def layer_norm(x, filters=None, epsilon=1e-6, name=None, reuse=None): """Layer normalize the tensor x, averaging over the last dimension.""" if filters is None: filters = shape_list(x)[-1] with tf.variable_scope( name, default_name="layer_norm", values=[x], reuse=reuse): scale = tf.get_variable( "layer_norm_scale", [filters], initializer=tf.ones_initializer()) bias = tf.get_variable( "layer_norm_bias", [filters], initializer=tf.zeros_initializer()) if allow_defun: result = layer_norm_compute(x, tf.constant(epsilon), scale, bias) result.set_shape(x.get_shape()) else: result = layer_norm_compute_python(x, epsilon, scale, bias) return result
Example #8
Source File: variables.py From DOTA_models with Apache License 2.0 | 6 votes |
def global_step(device=''): """Returns the global step variable. Args: device: Optional device to place the variable. It can be an string or a function that is called to get the device for the variable. Returns: the tensor representing the global step variable. """ global_step_ref = tf.get_collection(tf.GraphKeys.GLOBAL_STEP) if global_step_ref: return global_step_ref[0] else: collections = [ VARIABLES_TO_RESTORE, tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP, ] # Get the device for the variable. with tf.device(variable_device(device, 'global_step')): return tf.get_variable('global_step', shape=[], dtype=tf.int64, initializer=tf.zeros_initializer(), trainable=False, collections=collections)
Example #9
Source File: generator.py From UROP-Adversarial-Feature-Matching-for-Text-Generation with GNU Affero General Public License v3.0 | 6 votes |
def init_param(self): idm = self.input_dim hs = self.hidden_size ws = len(self.window) nf = idm * ws # author's special initlaization strategy. self.Wemb = tf.get_variable(name=self.name + '_Wemb', shape=[self.vocab_size, idm], dtype=tf.float32, initializer=tf.random_uniform_initializer()) self.bhid = tf.get_variable(name=self.name + '_bhid', shape=[self.vocab_size], dtype=tf.float32, initializer=tf.zeros_initializer()) self.Vhid = tf.get_variable(name=self.name + '_Vhid', shape=[hs, idm], dtype=tf.float32, initializer=tf.random_uniform_initializer()) self.Vhid = dot(self.Vhid, self.Wemb) # [hidden_size, vocab_size] self.i2h_W = tf.get_variable(name=self.name + '_i2h_W', shape=[idm, hs * 4], dtype=tf.float32, initializer=tf.random_uniform_initializer()) self.h2h_W = tf.get_variable(name=self.name + '_h2h_W', shape=[hs, hs * 4], dtype=tf.float32, initializer=tf.orthogonal_initializer()) self.z2h_W = tf.get_variable(name=self.name + '_z2h_W', shape=[nf, hs * 4], dtype=tf.float32, initializer=tf.random_uniform_initializer()) b_init_1 = tf.zeros((hs,)) b_init_2 = tf.ones((hs,)) * 3 b_init_3 = tf.zeros((hs,)) b_init_4 = tf.zeros((hs,)) b_init = tf.concat([b_init_1, b_init_2, b_init_3, b_init_4], axis=0) # b_init = tf.constant(b_init) # self.b = tf.get_variable(name=self.name + '_b', shape=[hs * 4], dtype=tf.float32, initializer=b_init) self.b = tf.get_variable(name=self.name + '_b', dtype=tf.float32, initializer=b_init) # ValueError: If initializer is a constant, do not specify shape. self.C0 = tf.get_variable(name=self.name + '_C0', shape=[nf, hs], dtype=tf.float32, initializer=tf.random_uniform_initializer()) self.b0 = tf.get_variable(name=self.name + '_b0', shape=[hs], dtype=tf.float32, initializer=tf.zeros_initializer())
Example #10
Source File: ops.py From TEGAN with Apache License 2.0 | 6 votes |
def conv3d(inpt, f, output_channels, s, use_bias=False, scope='conv', name=None): inpt_shape = inpt.get_shape().as_list() with tf.variable_scope(scope): filtr = tf.get_variable(initializer=tf.contrib.layers.xavier_initializer(), shape=[f,f,f,inpt_shape[-1],output_channels],name='filtr') strides = [1,s,s,s,1] output = conv3d_withPeriodicPadding(inpt,filtr,strides,name) if use_bias: with tf.variable_scope(scope): bias = tf.get_variable(intializer=tf.zeros_initializer( [1,1,1,1,output_channels],dtype=tf.float32),name='bias') output = output + bias; return output
Example #11
Source File: network_units.py From DOTA_models with Apache License 2.0 | 6 votes |
def __init__(self, component, name, shape, dtype): """Construct variables to normalize an input of given shape. Arguments: component: ComponentBuilder handle. name: Human readable name to organize the variables. shape: Shape of the layer to be normalized. dtype: Type of the layer to be normalized. """ self._name = name self._shape = shape self._component = component beta = tf.get_variable( 'beta_%s' % name, shape=shape, dtype=dtype, initializer=tf.zeros_initializer()) gamma = tf.get_variable( 'gamma_%s' % name, shape=shape, dtype=dtype, initializer=tf.ones_initializer()) self._params = [beta, gamma]
Example #12
Source File: model.py From DNA-GAN with MIT License | 5 votes |
def make_fc_bn(self, name, X, out_dim): in_dim = X.get_shape().as_list()[-1] with tf.variable_scope(name) as scope: W = tf.get_variable('W', shape=[in_dim, out_dim], initializer=tf.random_normal_initializer(stddev=0.02), ) b = tf.get_variable('b', shape=[out_dim], initializer=tf.zeros_initializer(), ) X = tf.add(tf.matmul(X, W), b) return tf.layers.batch_normalization(X, training=self.is_train)
Example #13
Source File: model.py From DNA-GAN with MIT License | 5 votes |
def make_fc(self, name, X, out_dim): in_dim = X.get_shape().as_list()[-1] with tf.variable_scope(name) as scope: W = tf.get_variable('W', shape=[in_dim, out_dim], initializer=tf.random_normal_initializer(stddev=0.02), ) b = tf.get_variable('b', shape=[out_dim], initializer=tf.zeros_initializer(), ) return tf.add(tf.matmul(X, W), b)
Example #14
Source File: resnet.py From tensorflow_multigpu_imagenet with MIT License | 5 votes |
def getModel(net, num_output, wd, is_training, num_blocks=[3, 4, 6, 3], # defaults to 50-layer network bottleneck= True, transfer_mode= False): conv_weight_initializer = tf.truncated_normal_initializer(stddev= 0.1) fc_weight_initializer = tf.truncated_normal_initializer(stddev= 0.01) with tf.variable_scope('scale1'): net = spatialConvolution(net, 7, 2, 64, weight_initializer= conv_weight_initializer, wd= wd) net = batchNormalization(net, is_training= is_training) net = tf.nn.relu(net) with tf.variable_scope('scale2'): net = maxPool(net, 3, 2) net = resnetStack(net, num_blocks[0], 1, 64, bottleneck, wd= wd, is_training= is_training) with tf.variable_scope('scale3'): net = resnetStack(net, num_blocks[1], 2, 128, bottleneck, wd= wd, is_training= is_training) with tf.variable_scope('scale4'): net = resnetStack(net, num_blocks[2], 2, 256, bottleneck, wd= wd, is_training= is_training) with tf.variable_scope('scale5'): net = resnetStack(net, num_blocks[3], 2, 512, bottleneck, wd= wd, is_training= is_training) # post-net net = tf.reduce_mean(net, reduction_indices= [1, 2], name= "avg_pool") with tf.variable_scope('output'): net = fullyConnected(net, num_output, weight_initializer= fc_weight_initializer, bias_initializer= tf.zeros_initializer, wd= wd) return net
Example #15
Source File: distributions.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0): mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias) logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) return self.pdfromflat(pdparam), mean
Example #16
Source File: ops.py From TEGAN with Apache License 2.0 | 5 votes |
def prelu_tf(inputs, name='Prelu'): with tf.variable_scope(name): alphas = tf.get_variable('alpha',inputs.get_shape()[-1], initializer=tf.zeros_initializer(),dtype=tf.float32) pos = tf.nn.relu(inputs) neg = alphas * (inputs - abs(inputs)) * 0.5 return pos + neg
Example #17
Source File: keras_words_subtoken_metrics.py From code2vec with MIT License | 5 votes |
def __init__(self, index_to_word_table: Optional[tf.lookup.StaticHashTable] = None, topk_predicted_words=None, predicted_words_filters: Optional[List[FilterType]] = None, subtokens_delimiter: str = '|', name=None, dtype=None): super(WordsSubtokenMetricBase, self).__init__(name=name, dtype=dtype) self.tp = self.add_weight('true_positives', shape=(), initializer=tf.zeros_initializer) self.fp = self.add_weight('false_positives', shape=(), initializer=tf.zeros_initializer) self.fn = self.add_weight('false_negatives', shape=(), initializer=tf.zeros_initializer) self.index_to_word_table = index_to_word_table self.topk_predicted_words = topk_predicted_words self.predicted_words_filters = predicted_words_filters self.subtokens_delimiter = subtokens_delimiter
Example #18
Source File: distributions.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0): mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias) logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) return self.pdfromflat(pdparam), mean
Example #19
Source File: svdpp.py From tf-recsys with MIT License | 5 votes |
def _create_item_terms(self, items, H=None): num_users = self.num_users num_items = self.num_items num_factors = self.num_factors q_i, b_i = super(SVDPP, self)._create_item_terms(items) if H is None: return q_i, b_i else: with tf.variable_scope('item'): implicit_feedback_embeddings = tf.get_variable( name='implict_feedback_embedding', shape=[num_users, num_factors], initializer=tf.zeros_initializer(), regularizer=tf.contrib.layers.l2_regularizer(self.reg_g_i)) g_i = tf.gather( tf.nn.embedding_lookup_sparse( implicit_feedback_embeddings, H, sp_weights=None, combiner='sqrtn'), items, name='g_i' ) return q_i, b_i, g_i
Example #20
Source File: overfeat.py From STORK with MIT License | 5 votes |
def overfeat_arg_scope(weight_decay=0.0005): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME'): with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #21
Source File: vgg.py From STORK with MIT License | 5 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc: return arg_sc
Example #22
Source File: common.py From tensorflow_multigpu_imagenet with MIT License | 5 votes |
def batchNormalization(x, is_training, decay= 0.9, epsilon= 0.001, inference_only= False): x_shape = x.get_shape() params_shape = x_shape[-1:] axis = list(range(len(x_shape) - 1)) beta = _get_variable('beta', params_shape, initializer= tf.zeros_initializer) gamma = _get_variable('gamma', params_shape, initializer= tf.ones_initializer) moving_mean = _get_variable('moving_mean', params_shape, initializer= tf.zeros_initializer, trainable= False) moving_variance = _get_variable('moving_variance', params_shape, initializer= tf.ones_initializer, trainable= False) # These ops will only be preformed when training. mean, variance = tf.nn.moments(x, axis) update_moving_mean = moving_averages.assign_moving_average(moving_mean, mean, decay) update_moving_variance = moving_averages.assign_moving_average( moving_variance, variance, decay) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS , update_moving_mean) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS , update_moving_variance) return tf.cond(is_training, lambda: tf.nn.batch_normalization(x, mean, variance, beta, gamma, epsilon), lambda: tf.nn.batch_normalization(x, moving_mean, moving_variance, beta, gamma, epsilon)) #return tf.contrib.layers.batch_norm(x, decay= decay, epsilon= epsilon, is_training= is_training) # Flatten Layer
Example #23
Source File: overfeat.py From DeepLab_v3 with MIT License | 5 votes |
def overfeat_arg_scope(weight_decay=0.0005): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME'): with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #24
Source File: aggregators.py From PathCon with MIT License | 5 votes |
def __init__(self, batch_size, input_dim, output_dim, act=lambda x: x, self_included=True, name=None): super(CrossAggregator, self).__init__(batch_size, input_dim, output_dim, act, self_included, name) with tf.variable_scope(self.name): addition = self.input_dim if self.self_included else 0 self.weights = tf.get_variable(shape=[self.input_dim * self.input_dim + addition, self.output_dim], initializer=tf.contrib.layers.xavier_initializer(), dtype=tf.float64, name='weights') self.bias = tf.get_variable(shape=[self.output_dim], initializer=tf.zeros_initializer(), dtype=tf.float64, name='bias')
Example #25
Source File: aggregators.py From PathCon with MIT License | 5 votes |
def __init__(self, batch_size, input_dim, output_dim, act=lambda x: x, self_included=True, name=None): super(ConcatAggregator, self).__init__(batch_size, input_dim, output_dim, act, self_included, name) with tf.variable_scope(self.name): multiplier = 3 if self_included else 2 self.weights = tf.get_variable(shape=[self.input_dim * multiplier, self.output_dim], initializer=tf.contrib.layers.xavier_initializer(), dtype=tf.float64, name='weights') self.bias = tf.get_variable(shape=[self.output_dim], initializer=tf.zeros_initializer(), dtype=tf.float64, name='bias')
Example #26
Source File: aggregators.py From PathCon with MIT License | 5 votes |
def __init__(self, batch_size, input_dim, output_dim, act=lambda x: x, self_included=True, name=None): super(MeanAggregator, self).__init__(batch_size, input_dim, output_dim, act, self_included, name) with tf.variable_scope(self.name): self.weights = tf.get_variable(shape=[self.input_dim, self.output_dim], initializer=tf.contrib.layers.xavier_initializer(), dtype=tf.float64, name='weights') self.bias = tf.get_variable(shape=[self.output_dim], initializer=tf.zeros_initializer(), dtype=tf.float64, name='bias')
Example #27
Source File: model.py From PathCon with MIT License | 5 votes |
def _get_weight_and_bias(input_dim, output_dim): weight = tf.get_variable('weight', [input_dim, output_dim], tf.float64, tf.contrib.layers.xavier_initializer()) bias = tf.get_variable('bias', [output_dim], tf.float64, tf.zeros_initializer()) return weight, bias
Example #28
Source File: freeze_model.py From deep_sort with GNU General Public License v3.0 | 5 votes |
def residual_block(incoming, scope, nonlinearity=tf.nn.elu, weights_initializer=tf.truncated_normal_initializer(1e3), bias_initializer=tf.zeros_initializer(), regularizer=None, increase_dim=False, is_first=False, summarize_activations=True): def network_builder(x, s): return create_inner_block( x, s, nonlinearity, weights_initializer, bias_initializer, regularizer, increase_dim, summarize_activations) return create_link( incoming, network_builder, scope, nonlinearity, weights_initializer, regularizer, is_first, summarize_activations)
Example #29
Source File: freeze_model.py From deep_sort with GNU General Public License v3.0 | 5 votes |
def create_inner_block( incoming, scope, nonlinearity=tf.nn.elu, weights_initializer=tf.truncated_normal_initializer(1e-3), bias_initializer=tf.zeros_initializer(), regularizer=None, increase_dim=False, summarize_activations=True): n = incoming.get_shape().as_list()[-1] stride = 1 if increase_dim: n *= 2 stride = 2 incoming = slim.conv2d( incoming, n, [3, 3], stride, activation_fn=nonlinearity, padding="SAME", normalizer_fn=_batch_norm_fn, weights_initializer=weights_initializer, biases_initializer=bias_initializer, weights_regularizer=regularizer, scope=scope + "/1") if summarize_activations: tf.summary.histogram(incoming.name + "/activations", incoming) incoming = slim.dropout(incoming, keep_prob=0.6) incoming = slim.conv2d( incoming, n, [3, 3], 1, activation_fn=None, padding="SAME", normalizer_fn=None, weights_initializer=weights_initializer, biases_initializer=bias_initializer, weights_regularizer=regularizer, scope=scope + "/2") return incoming
Example #30
Source File: vgg.py From DeepLab_v3 with MIT License | 5 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc: return arg_sc