Python tensorflow.summary() Examples
The following are 30
code examples of tensorflow.summary().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: tf_summary_test.py From tensorboard with Apache License 2.0 | 6 votes |
def test_tf_summary_export(self): # Ensure that TF wasn't already imported, since we want this test to cover # the entire flow of "import tensorflow; use tf.summary" and if TF was in # fact already imported that reduces the comprehensiveness of the test. # This means this test has to be kept in its own file and that no other # test methods in this file should import tensorflow. self.assertEqual("notfound", sys.modules.get("tensorflow", "notfound")) import tensorflow as tf if not tf.__version__.startswith("2."): if hasattr(tf, "compat") and hasattr(tf.compat, "v2"): tf = tf.compat.v2 else: self.skipTest("TF v2 summary API not available") # Check that tf.summary contains both TB-provided and TF-provided symbols. expected_symbols = frozenset( ["scalar", "image", "audio", "histogram", "text"] + ["write", "create_file_writer", "SummaryWriter"] ) self.assertLessEqual(expected_symbols, frozenset(dir(tf.summary))) # Ensure we can dereference symbols as well. print(tf.summary.scalar) print(tf.summary.write)
Example #2
Source File: kerascallback.py From delve with MIT License | 6 votes |
def on_epoch_begin(self, epoch, logs=None): """Add user-def. op to Model eval_function callbacks, reset batch count.""" # check if histogram summary should be run for this epoch if self.user_defined_freq and epoch % self.user_defined_freq == 0: self._epoch = epoch # pylint: disable=protected-access # add the user-defined summary ops if it should run this epoch self.model._make_eval_function() if self.merged not in self.model._eval_function.fetches: self.model._eval_function.fetches.append(self.merged) self.model._eval_function.fetch_callbacks[ self.merged] = self._fetch_callback # pylint: enable=protected-access super(CustomTensorBoard, self).on_epoch_begin(epoch, logs=None)
Example #3
Source File: component.py From rlgraph with Apache License 2.0 | 6 votes |
def propagate_summary(self, summary_key): """ Propagates a single summary op of this Component to its parents' summaries registries. Args: summary_key (str): The lookup key for the summary to propagate. """ # Return if there is no parent. if self.parent_component is None: return # If already there -> Error. if summary_key in self.parent_component.summaries: raise RLGraphError("ERROR: Summary registry of '{}' already has a summary under key '{}'!". format(self.parent_component.name, summary_key)) self.parent_component.summaries[summary_key] = self.summaries[summary_key] # Recurse up the container hierarchy. self.parent_component.propagate_summary(summary_key)
Example #4
Source File: layers.py From PADME with MIT License | 6 votes |
def set_summary(self, summary_op, summary_description=None, collections=None): """Annotates a tensor with a tf.summary operation This causes self.out_tensor to be logged to Tensorboard. Parameters ---------- summary_op: str summary operation to annotate node summary_description: object, optional Optional summary_pb2.SummaryDescription() collections: list of graph collections keys, optional New summary op is added to these collections. Defaults to [GraphKeys.SUMMARIES] """ supported_ops = {'tensor_summary', 'scalar', 'histogram'} if summary_op not in supported_ops: raise ValueError( "Invalid summary_op arg. Only 'tensor_summary', 'scalar', 'histogram' supported" ) self.summary_op = summary_op self.summary_description = summary_description self.collections = collections self.tensorboard = True
Example #5
Source File: layers.py From PADME with MIT License | 6 votes |
def add_summary_to_tg(self, tb_input=None): """ Create the summary operation for this layer, if set_summary() has been called on it. Can only be called after self.create_layer to gaurentee that name is not None. Parameters ---------- tb_input: tensor the tensor to log to Tensorboard. If None, self.out_tensor is used. """ if self.tensorboard == False: return if tb_input == None: tb_input = self.out_tensor if self.summary_op == "tensor_summary": tf.summary.tensor_summary(self.name, tb_input, self.summary_description, self.collections) elif self.summary_op == 'scalar': tf.summary.scalar(self.name, tb_input, self.collections) elif self.summary_op == 'histogram': tf.summary.histogram(self.name, tb_input, self.collections)
Example #6
Source File: transformer_vae.py From BERT with Apache License 2.0 | 6 votes |
def estimator_spec_eval(self, features, logits, labels, loss, losses_dict): """Constructs `tf.estimator.EstimatorSpec` for EVAL (evaluation) mode.""" estimator_spec = super(TransformerAE, self).estimator_spec_eval( features, logits, labels, loss, losses_dict) if common_layers.is_xla_compiled(): # For TPUs (and XLA more broadly?), do not add summary hooks that depend # on losses; they are not supported. return estimator_spec summary_op = tf.get_collection(tf.GraphKeys.SUMMARIES, scope="losses") summary_op.extend(tf.get_collection(tf.GraphKeys.SUMMARIES, scope="loss")) summary_op.append(tf.summary.scalar("loss", loss)) summary_saver_hook = tf.train.SummarySaverHook( save_steps=100, summary_op=summary_op, output_dir=os.path.join(self.hparams.model_dir, "eval")) hooks = list(estimator_spec.evaluation_hooks) hooks.append(summary_saver_hook) return estimator_spec._replace(evaluation_hooks=hooks)
Example #7
Source File: summary_util.py From guildai with Apache License 2.0 | 6 votes |
def _try_listen_tf_v1(self): if not _tf_version().startswith("1."): raise util.TryFailed() try: # pylint: disable=import-error,no-name-in-module from tensorflow.compat.v1.summary import FileWriter except Exception as e: self.log.debug( "error importing tensorflow.compat.v1.summary.FileWriter: %s", e ) raise util.TryFailed() else: self.log.debug( "wrapping tensorflow.compat.v1.summary.FileWriter.add_summary" ) python_util.listen_method(FileWriter, "add_summary", self._handle_summary)
Example #8
Source File: t2t_model.py From BERT with Apache License 2.0 | 6 votes |
def summarize_features(features, num_shards=1): """Generate summaries for features.""" if not common_layers.should_generate_summaries(): return with tf.name_scope("input_stats"): for (k, v) in sorted(six.iteritems(features)): if (isinstance(v, tf.Tensor) and (v.get_shape().ndims > 1) and (v.dtype != tf.string)): tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards) tf.summary.scalar("%s_length" % k, tf.shape(v)[1]) nonpadding = tf.to_float(tf.not_equal(v, 0)) nonpadding_tokens = tf.reduce_sum(nonpadding) tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens) tf.summary.scalar("%s_nonpadding_fraction" % k, tf.reduce_mean(nonpadding))
Example #9
Source File: base_algorithm.py From ULTRA with Apache License 2.0 | 5 votes |
def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs. Args: session: (tf.Session) tensorflow session to use. input_feed: (dictionary) A dictionary containing all the input feed data. forward_only: whether to do the backward step (False) or only forward (True). Returns: A triple consisting of the loss, outputs (None if we do backward), and a tf.summary containing related information about the step. """ pass
Example #10
Source File: model.py From vae-seq with Apache License 2.0 | 5 votes |
def _make_output_summary(self, tag, observed): """Returns a tf.summary to display this sequence.."""
Example #11
Source File: profiling.py From seed_rl with Apache License 2.0 | 5 votes |
def __exit__(self, exc_type, exc_value, traceback): self.elapsed_s = time.time() - self.start_time_s aggregator = self.aggregators[self.summary_name] aggregator.add(self.elapsed_s) if aggregator.count >= self.aggregation_window_size: tf.summary.scalar(self.summary_name, aggregator.average()) aggregator.reset()
Example #12
Source File: utils.py From dynamic-training-bench with Mozilla Public License 2.0 | 5 votes |
def tf_log(summary, collection=SCALAR_SUMMARIES): """Add tf.summary object to collection named collection""" tf.add_to_collection(collection, summary)
Example #13
Source File: regression_EM.py From ULTRA with Apache License 2.0 | 5 votes |
def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs. Args: session: (tf.Session) tensorflow session to use. input_feed: (dictionary) A dictionary containing all the input feed data. forward_only: whether to do the backward step (False) or only forward (True). Returns: A triple consisting of the loss, outputs (None if we do backward), and a tf.summary containing related information about the step. """ # Output feed: depends on whether we do a backward step or not. if not forward_only: input_feed[self.is_training.name] = True output_feed = [ self.updates, # Update Op that does SGD. self.loss, # Loss for this batch. self.update_propensity_op, self.train_summary # Summarize statistics. ] else: input_feed[self.is_training.name] = False output_feed = [ self.eval_summary, # Summarize statistics. self.output # Model outputs ] outputs = session.run(output_feed, input_feed) if not forward_only: # loss, no outputs, summary. return outputs[1], None, outputs[-1] else: return None, outputs[1], outputs[0] # loss, outputs, summary.
Example #14
Source File: nsgd.py From ULTRA with Apache License 2.0 | 5 votes |
def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs. Args: session: (tf.Session) tensorflow session to use. input_feed: (dictionary) A dictionary containing all the input feed data. forward_only: whether to do the backward step (False) or only forward (True). Returns: A triple consisting of the loss, outputs (None if we do backward), and a tf.summary containing related information about the step. """ #print ("!!!!!!!!!!!!!", tf.shape(self.new_output)) if not forward_only: input_feed[self.is_training.name] = True output_feed = [ self.updates, # Update Op that does SGD. self.loss, # Loss for this batch. self.train_summary # Summarize statistics. ] + self.update_ops_list outputs = session.run(output_feed, input_feed) # loss, no outputs, summary. return outputs[1], None, outputs[2] else: input_feed[self.is_training.name] = False output_feed = [ self.eval_summary, # Summarize statistics. self.output # Model outputs ] outputs = session.run(output_feed, input_feed) return None, outputs[1], outputs[0] # loss, outputs, summary.
Example #15
Source File: SuperResolution.py From VideoSuperResolution with MIT License | 5 votes |
def summary(self): return tf.get_default_session().run(self.summary_op, feed_dict=self.feed_dict)
Example #16
Source File: pairwise_debias.py From ULTRA with Apache License 2.0 | 5 votes |
def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs. Args: session: (tf.Session) tensorflow session to use. input_feed: (dictionary) A dictionary containing all the input feed data. forward_only: whether to do the backward step (False) or only forward (True). Returns: A triple consisting of the loss, outputs (None if we do backward), and a tf.summary containing related information about the step. """ # Output feed: depends on whether we do a backward step or not. if not forward_only: input_feed[self.is_training.name] = True output_feed = [ self.updates, # Update Op that does SGD. self.loss, # Loss for this batch. self.update_propensity_op, self.train_summary # Summarize statistics. ] else: input_feed[self.is_training.name] = False output_feed = [ self.eval_summary, # Summarize statistics. self.output # Model outputs ] outputs = session.run(output_feed, input_feed) if not forward_only: # loss, no outputs, summary. return outputs[1], None, outputs[-1] else: return None, outputs[1], outputs[0] # loss, outputs, summary.
Example #17
Source File: dbgd.py From ULTRA with Apache License 2.0 | 5 votes |
def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs. Args: session: (tf.Session) tensorflow session to use. input_feed: (dictionary) A dictionary containing all the input feed data. forward_only: whether to do the backward step (False) or only forward (True). Returns: A triple consisting of the loss, outputs (None if we do backward), and a tf.summary containing related information about the step. """ if not forward_only: input_feed[self.is_training.name] = True output_feed = [ self.updates, # Update Op that does SGD. self.loss, # Loss for this batch. self.train_summary # Summarize statistics. ] outputs = session.run(output_feed, input_feed) # loss, no outputs, summary. return outputs[1], None, outputs[-1] else: input_feed[self.is_training.name] = False output_feed = [ self.eval_summary, # Summarize statistics. self.output # Model outputs ] outputs = session.run(output_feed, input_feed) return None, outputs[1], outputs[0] # loss, outputs, summary.
Example #18
Source File: dla.py From ULTRA with Apache License 2.0 | 5 votes |
def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs. Args: session: (tf.Session) tensorflow session to use. input_feed: (dictionary) A dictionary containing all the input feed data. forward_only: whether to do the backward step (False) or only forward (True). Returns: A triple consisting of the loss, outputs (None if we do backward), and a tf.summary containing related information about the step. """ # Output feed: depends on whether we do a backward step or not. if not forward_only: input_feed[self.is_training.name] = True output_feed = [self.updates, # Update Op that does SGD. self.loss, # Loss for this batch. self.train_summary # Summarize statistics. ] else: input_feed[self.is_training.name] = False output_feed = [ self.eval_summary, # Summarize statistics. self.output # Model outputs ] outputs = session.run(output_feed, input_feed) if not forward_only: # loss, no outputs, summary. return outputs[1], None, outputs[-1] else: return None, outputs[1], outputs[0] # no loss, outputs, summary.
Example #19
Source File: navie_algorithm.py From ULTRA with Apache License 2.0 | 5 votes |
def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs. Args: session: (tf.Session) tensorflow session to use. input_feed: (dictionary) A dictionary containing all the input feed data. forward_only: whether to do the backward step (False) or only forward (True). Returns: A triple consisting of the loss, outputs (None if we do backward), and a tf.summary containing related information about the step. """ # Output feed: depends on whether we do a backward step or not. if not forward_only: input_feed[self.is_training.name] = True output_feed = [ self.updates, # Update Op that does SGD. self.loss, # Loss for this batch. self.train_summary # Summarize statistics. ] else: input_feed[self.is_training.name] = False output_feed = [ self.eval_summary, # Summarize statistics. self.output # Model outputs ] outputs = session.run(output_feed, input_feed) if not forward_only: # loss, no outputs, summary. return outputs[1], None, outputs[-1] else: return None, outputs[1], outputs[0] # loss, outputs, summary.
Example #20
Source File: SuperResolution.py From VideoSuperResolution with MIT License | 5 votes |
def __init__(self, scale, channel, weight_decay=0, **kwargs): """Common initialize parameters Args: scale: the scale factor, can be a list of 2 integer to specify different stretch in width and height channel: input color channel weight_decay: decay of L2 regularization on trainable weights """ self.scale = to_list(scale, repeat=2) self.channel = channel self.weight_decay = weight_decay # weights regularization self.rgba = False # deprecated self._trainer = VSR # default trainer self.inputs = [] # hold placeholder for model inputs # hold some image procession for inputs (i.e. RGB->YUV, if you need) self.inputs_preproc = [] self.label = [] # hold placeholder for model labels self.outputs = [] # hold output tensors self.loss = [] # this is the optimize op self.train_metric = {} # metrics show at training phase self.metrics = {} # metrics record in tf.summary and show at benchmark self.feed_dict = {} self.savers = {} self.global_steps = None self.training_phase = None # only useful for bn self.learning_rate = None self.summary_op = None self.summary_writer = None self.compiled = False self.pre_ckpt = None self.unknown_args = kwargs
Example #21
Source File: SuperResolution.py From VideoSuperResolution with MIT License | 5 votes |
def compile(self): """build entire graph and training ops""" self.global_steps = tf.Variable(0, trainable=False, name='global_step') self.training_phase = tf.placeholder(tf.bool, name='is_training') self.learning_rate = tf.placeholder(tf.float32, name='learning_rate') self.build_graph() self.build_loss() self.build_summary() self.summary_op = tf.summary.merge_all() self.build_saver() self.compiled = True return self
Example #22
Source File: SuperResolution.py From VideoSuperResolution with MIT License | 5 votes |
def build_summary(self): """summary scalars in metrics""" for k, v in self.metrics.items(): tf.summary.scalar(k, v)
Example #23
Source File: tpu_estimator.py From estimator with Apache License 2.0 | 5 votes |
def AddOp(self, op): if op.type in [ 'AudioSummary', 'AudioSummaryV2', 'HistogramSummary', 'ImageSummary', 'MergeSummary', 'ScalarSummary', 'TensorSummary', 'TensorSummaryV2' ]: raise ValueError('Please use tf.contrib.summary instead of tf.summary ' 'inside of host_calls.')
Example #24
Source File: summary_util.py From guildai with Apache License 2.0 | 5 votes |
def _patch_guild_summary(self): from guild import summary python_util.listen_method( summary.SummaryWriter, "add_scalar", self._handle_guild_scalar )
Example #25
Source File: summary_util.py From guildai with Apache License 2.0 | 5 votes |
def _listen_tf_summary(self): # pylint: disable=import-error,no-name-in-module from tensorflow import summary self.log.debug("wrapping tensorflow.summary.scalar") python_util.listen_function(summary, "scalar", self._handle_scalar)
Example #26
Source File: summary_util.py From guildai with Apache License 2.0 | 5 votes |
def _try_listen_tf_legacy(self): if not _tf_version().startswith("1."): raise util.TryFailed() try: # pylint: disable=import-error,no-name-in-module from tensorflow.summary import FileWriter except Exception as e: self.log.debug("error importing tensorflow.summary.FileWriter: %s", e) raise util.TryFailed() else: self.log.debug("wrapping tensorflow.summary.FileWriter.add_summary") python_util.listen_method(FileWriter, "add_summary", self._handle_summary)
Example #27
Source File: summary_util.py From guildai with Apache License 2.0 | 5 votes |
def _listen_tf_failed(self): self.log.warning( "unable to find TensorFlow summary writer, skipping " "summaries for %s", self.name, )
Example #28
Source File: summary_util.py From guildai with Apache License 2.0 | 5 votes |
def _handle_summary(self, add_summary, _summary, global_step=None): """Callback to apply summary values via add_summary callback. This is the TF 1.x API for logging scalars. See SummaryPlugin docstring above for background. """ vals = self._summary_values(global_step) if vals: self.log.debug("summary values via add_summary: %s", vals) summary = tf_scalar_summary(vals) add_summary(summary, global_step)
Example #29
Source File: summary_util.py From guildai with Apache License 2.0 | 5 votes |
def _summary_values(self, global_step): if self._summary_cache.expired(): self.log.debug("reading summary values") try: vals = self.read_summary_values(global_step) except: self.log.exception("reading summary values") vals = {} self._summary_cache.reset_for_step(global_step, vals) return self._summary_cache.for_step(global_step)
Example #30
Source File: summary_util.py From guildai with Apache License 2.0 | 5 votes |
def _handle_scalar(self, scalar, _name, _data, step=None, description=None): """Callback to apply summary values via scalars API. This is the TF 2.x and tensorboardX API for logging scalars. """ # pylint: disable=unused-argument vals = self._summary_values(step) if vals: self.log.debug("summary values via scalar: %s", vals) for tag, val in vals.items(): if val is None: continue scalar(tag, val, step)