Python tensorflow.as_string() Examples
The following are 30
code examples of tensorflow.as_string().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: mappers_test.py From transform with Apache License 2.0 | 6 votes |
def testEstimatedProbabilityDensityMissingKey(self): input_size = 5 with tf.compat.v1.Graph().as_default(): input_data = tf.constant([[str(x + 1)] for x in range(input_size)]) count = tf.constant([3] * input_size, tf.int64) boundaries = tf.as_string(tf.range(input_size)) with mock.patch.object( mappers.analyzers, 'histogram', side_effect=[(count, boundaries)]): result = mappers.estimated_probability_density( input_data, categorical=True) expected = np.array([[0.2], [0.2], [0.2], [0.2], [0.]], np.float32) with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.tables_initializer()) self.assertAllEqual(expected, sess.run(result))
Example #2
Source File: graph_tools_test.py From transform with Apache License 2.0 | 6 votes |
def _create_graph_with_table_initialized_by_table_output(): filename = tf.compat.v1.placeholder(tf.string, ()) table1 = _create_lookup_table_from_file(filename) # Use output from the first table to initialize the second table. keys = ['a', 'b', 'c'] tensor_keys = tf.as_string( table1.lookup(tf.constant(keys, tf.string))) initializer2 = tf.lookup.KeyValueTensorInitializer( keys=tensor_keys, values=tf.range(len(keys), dtype=tf.int64), key_dtype=tf.string, value_dtype=tf.int64) table2 = tf.lookup.StaticHashTable(initializer2, default_value=-1) x = tf.compat.v1.placeholder(tf.string, (None,)) y = table2.lookup(x) return {'filename': filename, 'x': x, 'y': y}
Example #3
Source File: text_demo.py From tensorboard with Apache License 2.0 | 6 votes |
def markdown_table(step): # The text summary can also contain Markdown, including Markdown # tables. Markdown tables look like this: # # | hello | there | # |-------|-------| # | this | is | # | a | table | # # The leading and trailing pipes in each row are optional, and the text # doesn't actually have to be neatly aligned, so we can create these # pretty easily. Let's do so. header_row = "Pounds of chocolate | Happiness" chocolate = tf.range(step) happiness = tf.square(chocolate + 1) chocolate_column = tf.as_string(chocolate) happiness_column = tf.as_string(happiness) table_rows = tf.strings.join([chocolate_column, " | ", happiness_column]) table_body = tf.strings.reduce_join(inputs=table_rows, separator="\n") table = tf.strings.join([header_row, "---|---", table_body], separator="\n") preamble = "We conducted an experiment and found the following data:\n\n" result = tf.strings.join([preamble, table]) tf.compat.v1.summary.text("chocolate_study", result)
Example #4
Source File: fake_multi_examples_per_input_estimator.py From model-analysis with Apache License 2.0 | 6 votes |
def _parse_csv(rows_string_tensor): """Takes the string input tensor and returns a dict of rank-2 tensors.""" example_count = tf.io.decode_csv( records=rows_string_tensor, record_defaults=[tf.constant([0], dtype=tf.int32, shape=None)])[0] input_index, intra_input_index = _indices_from_example_count(example_count) annotation = tf.strings.join([ 'raw_input: ', tf.gather(rows_string_tensor, input_index), '; index: ', tf.as_string(intra_input_index) ]) return { 'example_count': tf.gather(example_count, input_index), 'input_index': input_index, 'intra_input_index': intra_input_index, 'annotation': annotation, }
Example #5
Source File: as_string_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testLargeInt(self): # Cannot use values outside -128..127 for test, because we're also # testing int8 s = lambda strs: [x.decode("ascii") for x in strs] with self.test_session(): input_ = tf.placeholder(tf.int32) int_inputs_ = [np.iinfo(np.int32).min, np.iinfo(np.int32).max] output = tf.as_string(input_) result = output.eval(feed_dict={input_: int_inputs_}) self.assertAllEqual(s(result), ["%d" % x for x in int_inputs_]) input_ = tf.placeholder(tf.int64) int_inputs_ = [np.iinfo(np.int64).min, np.iinfo(np.int64).max] output = tf.as_string(input_) result = output.eval(feed_dict={input_: int_inputs_}) self.assertAllEqual(s(result), ["%d" % x for x in int_inputs_])
Example #6
Source File: post_export_metrics.py From model-analysis with Apache License 2.0 | 5 votes |
def _cast_or_convert(original: tf.Tensor, target_type: tf.DType) -> tf.Tensor: if target_type == tf.string and original.dtype != tf.string: return tf.as_string(original) else: return tf.cast(original, target_type)
Example #7
Source File: text_demo.py From tensorboard with Apache License 2.0 | 5 votes |
def higher_order_tensors(step): # We're not limited to passing scalar tensors to the summary # operation. If we pass a rank-1 or rank-2 tensor, it'll be visualized # as a table in TensorBoard. (For higher-ranked tensors, you'll see # just a 2D slice of the data.) # # To demonstrate this, let's create a multiplication table. # First, we'll create the table body, a `step`-by-`step` array of # strings. numbers = tf.range(step) numbers_row = tf.expand_dims(numbers, 0) # shape: [1, step] numbers_column = tf.expand_dims(numbers, 1) # shape: [step, 1] products = tf.matmul(numbers_column, numbers_row) # shape: [step, step] table_body = tf.as_string(products) # Next, we'll create a header row and column, and a little # multiplication sign to put in the corner. bold_numbers = tf.strings.join(["**", tf.as_string(numbers), "**"]) bold_row = tf.expand_dims(bold_numbers, 0) bold_column = tf.expand_dims(bold_numbers, 1) corner_cell = tf.constant(u"\u00d7".encode("utf-8")) # MULTIPLICATION SIGN # Now, we have to put the pieces together. Using `axis=0` stacks # vertically; using `axis=1` juxtaposes horizontally. table_body_and_top_row = tf.concat([bold_row, table_body], axis=0) table_left_column = tf.concat([[[corner_cell]], bold_column], axis=0) table_full = tf.concat([table_left_column, table_body_and_top_row], axis=1) # The result, `table_full`, is a rank-2 string tensor of shape # `[step + 1, step + 1]`. We can pass it directly to the summary, and # we'll get a nicely formatted table in TensorBoard. tf.compat.v1.summary.text("multiplication_table", table_full)
Example #8
Source File: Reader.py From PReMVOS with MIT License | 5 votes |
def add_distance_transform(tensors, labels, distance_transform_fn): args_list = [tensors["unnormalized_img"], tensors["label"], tensors["raw_label"], labels[Constants.STRATEGY], labels[Constants.IGNORE_CLASSES]] if "old_label" in tensors: args_list.append(tensors["old_label"]) u0, u1, num_clicks = tf.py_func(distance_transform_fn, args_list, [tf.float32, tf.float32, tf.int64], name="create_distance_transform") u0 = tf.expand_dims(u0, axis=2) u0.set_shape(tensors["unnormalized_img"].get_shape().as_list()[:-1] + [1]) u1 = tf.expand_dims(u1, axis=2) u1.set_shape(tensors["unnormalized_img"].get_shape().as_list()[:-1] + [1]) shape = tensors["tag"].get_shape() im_path = tf.string_join([tensors["tag"], tf.as_string(num_clicks)], separator=":", name="JoinPath") im_path.set_shape(shape) tensors[Constants.DT_NEG] = u0 tensors[Constants.DT_POS] = u1 tensors["tag"] = im_path return tensors
Example #9
Source File: utils.py From DeepCTR with Apache License 2.0 | 5 votes |
def call(self, x, mask=None, **kwargs): if x.dtype != tf.string: x = tf.as_string(x, ) try: hash_x = tf.string_to_hash_bucket_fast(x, self.num_buckets if not self.mask_zero else self.num_buckets - 1, name=None) # weak hash except: hash_x = tf.strings.to_hash_bucket_fast(x, self.num_buckets if not self.mask_zero else self.num_buckets - 1, name=None) # weak hash if self.mask_zero: mask_1 = tf.cast(tf.not_equal(x, "0"), 'int64') mask_2 = tf.cast(tf.not_equal(x, "0.0"), 'int64') mask = mask_1 * mask_2 hash_x = (hash_x + 1) * mask return hash_x
Example #10
Source File: winequality.py From tf-yarn with Apache License 2.0 | 5 votes |
def get_dataset( path: str, train_fraction: float = 0.7, split: str = "train" ) -> tf.data.Dataset: def split_label(*row): return dict(zip(FEATURES, row)), row[-1] def in_training_set(*row): num_buckets = 1000 key = tf.strings.join(list(map(tf.as_string, row))) bucket_id = tf.strings.to_hash_bucket_fast(key, num_buckets) return bucket_id < int(train_fraction * num_buckets) def in_test_set(*row): return ~in_training_set(*row) data = tf.data.experimental.CsvDataset( path, [tf.float32] * len(FEATURES) + [tf.int32], header=True, field_delim=";") if split == "train": return data.filter(in_training_set).map(split_label) elif split == "test": return data.filter(in_test_set).map(split_label) else: raise ValueError("Unknown option split, must be 'train' or 'test'")
Example #11
Source File: inputs.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def _replace_empty_string_with_random_number(string_tensor): """Returns string unchanged if non-empty, and random string tensor otherwise. The random string is an integer 0 and 2**63 - 1, casted as string. Args: string_tensor: A tf.tensor of dtype string. Returns: out_string: A tf.tensor of dtype string. If string_tensor contains the empty string, out_string will contain a random integer casted to a string. Otherwise string_tensor is returned unchanged. """ empty_string = tf.constant('', dtype=tf.string, name='EmptyString') random_source_id = tf.as_string( tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64)) out_string = tf.cond( tf.equal(string_tensor, empty_string), true_fn=lambda: random_source_id, false_fn=lambda: string_tensor) return out_string
Example #12
Source File: inputs.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def _replace_empty_string_with_random_number(string_tensor): """Returns string unchanged if non-empty, and random string tensor otherwise. The random string is an integer 0 and 2**63 - 1, casted as string. Args: string_tensor: A tf.tensor of dtype string. Returns: out_string: A tf.tensor of dtype string. If string_tensor contains the empty string, out_string will contain a random integer casted to a string. Otherwise string_tensor is returned unchanged. """ empty_string = tf.constant('', dtype=tf.string, name='EmptyString') random_source_id = tf.as_string( tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64)) out_string = tf.cond( tf.equal(string_tensor, empty_string), true_fn=lambda: random_source_id, false_fn=lambda: string_tensor) return out_string
Example #13
Source File: train.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def make_status_message(model): """Makes a string `Tensor` of training status.""" return tf.string_join( [ 'Starting train step: current_image_id: ', tf.as_string(model.current_image_id), ', progress: ', tf.as_string(model.progress), ', num_blocks: {}'.format( model.num_blocks), ', batch_size: {}'.format(model.batch_size) ], name='status_message')
Example #14
Source File: bottles_of_bear.py From EsotericTensorFlow with MIT License | 5 votes |
def body(self, i, text): before, after, before_uppercase = tf.cond(tf.equal(i, 0), lambda: ('no more bottles', '99 bottles', 'No more bottles'), lambda: tf.cond(tf.equal(i, 1), lambda: ('1 bottle', 'no more bottles', '1 bottle'), lambda: tf.cond(tf.equal(i, 2), lambda: ('2 bottles', '1 bottle', '2 bottles'), lambda: (tf.string_join([tf.as_string(i), ' bottles'], ''), tf.string_join([tf.as_string(tf.subtract(i, 1)), ' bottles']), tf.string_join([tf.as_string(i), ' bottles'], ''))))) action = tf.cond(tf.equal(i, 0), lambda: tf.constant('Go to the store and buy some more'), lambda: tf.constant('Take one down and pass it around')) return tf.subtract(i, 1), tf.string_join([text, tf.string_join([before_uppercase, ' of beer on the wall, ', before, ' of beer.\n', action, ', ', after, ' of beer on the wall.\n'])])
Example #15
Source File: tfrecords_to_bigtable.py From class-balanced-loss with MIT License | 5 votes |
def build_row_key_dataset(num_records, row_prefix): if num_records is not None: ds = tf.data.Dataset.range(num_records) else: ds = tf.contrib.data.Counter() if num_records is None: width = 10 else: width = pad_width(num_records) ds = ds.map(lambda idx: tf.as_string(idx, width=width, fill='0')) if row_prefix is not None: ds = ds.map(lambda idx: tf.string_join([row_prefix, idx])) return ds
Example #16
Source File: inputs.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _replace_empty_string_with_random_number(string_tensor): """Returns string unchanged if non-empty, and random string tensor otherwise. The random string is an integer 0 and 2**63 - 1, casted as string. Args: string_tensor: A tf.tensor of dtype string. Returns: out_string: A tf.tensor of dtype string. If string_tensor contains the empty string, out_string will contain a random integer casted to a string. Otherwise string_tensor is returned unchanged. """ empty_string = tf.constant('', dtype=tf.string, name='EmptyString') random_source_id = tf.as_string( tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64)) out_string = tf.cond( tf.equal(string_tensor, empty_string), true_fn=lambda: random_source_id, false_fn=lambda: string_tensor) return out_string
Example #17
Source File: train.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def make_status_message(model): """Makes a string `Tensor` of training status.""" return tf.string_join( [ 'Starting train step: current_image_id: ', tf.as_string(model.current_image_id), ', progress: ', tf.as_string(model.progress), ', num_blocks: {}'.format( model.num_blocks), ', batch_size: {}'.format(model.batch_size) ], name='status_message')
Example #18
Source File: preprocessing.py From kale with Apache License 2.0 | 5 votes |
def preprocess(inputs): """tf.transform's callback function for preprocessing inputs. Args: inputs: map from feature keys to raw not-yet-transformed features. Returns: Map from string feature key to transformed feature operations. """ outputs = {} for key in DENSE_FLOAT_FEATURE_KEYS: # Preserve this feature as a dense float, setting nan's to the mean. outputs[key] = transform.scale_to_z_score(inputs[key]) for key in VOCAB_FEATURE_KEYS: # Build a vocabulary for this feature. if inputs[key].dtype == tf.string: vocab_tensor = inputs[key] else: vocab_tensor = tf.as_string(inputs[key]) outputs[key] = transform.string_to_int( vocab_tensor, vocab_filename='vocab_' + key, top_k=VOCAB_SIZE, num_oov_buckets=OOV_SIZE) for key in BUCKET_FEATURE_KEYS: outputs[key] = transform.bucketize(inputs[key], FEATURE_BUCKET_COUNT) for key in CATEGORICAL_FEATURE_KEYS: outputs[key] = tf.to_int64(inputs[key]) taxi_fare = inputs[FARE_KEY] taxi_tip = inputs[LABEL_KEY] # Test if the tip was > 20% of the fare. tip_threshold = tf.multiply(taxi_fare, tf.constant(0.2)) outputs[LABEL_KEY] = tf.logical_and( tf.logical_not(tf.is_nan(taxi_fare)), tf.greater(taxi_tip, tip_threshold)) return outputs
Example #19
Source File: inputs.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def _replace_empty_string_with_random_number(string_tensor): """Returns string unchanged if non-empty, and random string tensor otherwise. The random string is an integer 0 and 2**63 - 1, casted as string. Args: string_tensor: A tf.tensor of dtype string. Returns: out_string: A tf.tensor of dtype string. If string_tensor contains the empty string, out_string will contain a random integer casted to a string. Otherwise string_tensor is returned unchanged. """ empty_string = tf.constant('', dtype=tf.string, name='EmptyString') random_source_id = tf.as_string( tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64)) out_string = tf.cond( tf.equal(string_tensor, empty_string), true_fn=lambda: random_source_id, false_fn=lambda: string_tensor) return out_string
Example #20
Source File: meta_parameter_recorder.py From rec-rl with Apache License 2.0 | 5 votes |
def build_metagraph_list(self): """ Convert MetaParams into TF Summary Format and create summary_op Args: None Returns: Merged TF Op for TEXT summary elements, should only be executed once to reduce data duplication """ ops = [] self.ignore_unknown_dtypes = True for key in sorted(self.meta_params): value = self.convert_data_to_string(self.meta_params[key]) if len(value) == 0: continue if isinstance(value,str): ops.append(tf.summary.text(key, tf.convert_to_tensor(str(value)))) else: ops.append(tf.summary.text(key, tf.as_string(tf.convert_to_tensor(value)))) with tf.control_dependencies(tf.tuple(ops)): self.summary_merged = tf.summary.merge_all() return self.summary_merged
Example #21
Source File: cast.py From onnx-tensorflow with Apache License 2.0 | 5 votes |
def version_9(cls, node, **kwargs): inp = kwargs["tensor_dict"][node.inputs[0]] to_type = node.attrs.get("to") if to_type == tf.string: return [tf.as_string(inp)] if inp.dtype == tf.string: if to_type not in [tf.float32, tf.float64, tf.int32, tf.int64]: raise RuntimeError( "Cast string to type {} is not supported in Tensorflow.".format( to_type)) return [tf.strings.to_number(inp, to_type)] return [cls.make_tensor_from_onnx_node(node, **kwargs)]
Example #22
Source File: tfrecords_to_bigtable.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def build_row_key_dataset(num_records, row_prefix): if num_records is not None: ds = tf.data.Dataset.range(num_records) else: ds = tf.contrib.data.Counter() if num_records is None: width = 10 else: width = pad_width(num_records) ds = ds.map(lambda idx: tf.as_string(idx, width=width, fill='0')) if row_prefix is not None: ds = ds.map(lambda idx: tf.string_join([row_prefix, idx])) return ds
Example #23
Source File: tfrecords_to_bigtable.py From tpu_models with Apache License 2.0 | 5 votes |
def build_row_key_dataset(num_records, row_prefix): if num_records is not None: ds = tf.data.Dataset.range(num_records) else: ds = tf.contrib.data.Counter() if num_records is None: width = 10 else: width = pad_width(num_records) ds = ds.map(lambda idx: tf.as_string(idx, width=width, fill='0')) if row_prefix is not None: ds = ds.map(lambda idx: tf.string_join([row_prefix, idx])) return ds
Example #24
Source File: as_string_op_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testInt(self): # Cannot use values outside -128..127 for test, because we're also # testing int8 int_inputs_ = [0, -1, 1, -128, 127, -101, 101, -0] s = lambda strs: [x.decode("ascii") for x in strs] with self.test_session(): for dtype in (tf.int32, tf.int64, tf.int8): input_ = tf.placeholder(dtype) output = tf.as_string(input_) result = output.eval(feed_dict={input_: int_inputs_}) self.assertAllEqual(s(result), ["%d" % x for x in int_inputs_]) output = tf.as_string(input_, width=3) result = output.eval(feed_dict={input_: int_inputs_}) self.assertAllEqual(s(result), ["%3d" % x for x in int_inputs_]) output = tf.as_string(input_, width=3, fill="0") result = output.eval(feed_dict={input_: int_inputs_}) self.assertAllEqual(s(result), ["%03d" % x for x in int_inputs_]) with self.assertRaisesOpError("scientific and shortest"): output = tf.as_string(input_, scientific=True) output.eval(feed_dict={input_: int_inputs_}) with self.assertRaisesOpError("scientific and shortest"): output = tf.as_string(input_, shortest=True) output.eval(feed_dict={input_: int_inputs_}) with self.assertRaisesOpError("precision not supported"): output = tf.as_string(input_, precision=0) output.eval(feed_dict={input_: int_inputs_})
Example #25
Source File: as_string_op_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testBool(self): bool_inputs_ = [False, True] s = lambda strs: [x.decode("ascii") for x in strs] with self.test_session(): for dtype in (tf.bool,): input_ = tf.placeholder(dtype) output = tf.as_string(input_) result = output.eval(feed_dict={input_: bool_inputs_}) self.assertAllEqual(s(result), ["false", "true"])
Example #26
Source File: batch_sequences_with_states_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def setUp(self): super(BatchSequencesWithStatesTest, self).setUp() self.value_length = 4 self.batch_size = 2 self.key = tf.string_join(["key_", tf.as_string(tf.cast( 10000 * tf.random_uniform(()), tf.int32))]) self.sequences = {"seq1": np.random.rand(self.value_length, 5), "seq2": np.random.rand(self.value_length, 4, 2)} self.context = {"context1": [3, 4]} self.initial_states = {"state1": np.random.rand(6, 7), "state2": np.random.rand(8)}
Example #27
Source File: model.py From document-ocr with Apache License 2.0 | 5 votes |
def _build_pred(self): decoded, log_prob = tf.nn.ctc_greedy_decoder(self.logits, self.sequence_length) self.decoded = tf.identity(decoded[0], name='decoded') self.log_prob = tf.identity(log_prob, name='log_prob') if self.is_training: pred_str_labels = tf.as_string(self.decoded.values) pred_tensor = tf.SparseTensor(indices=self.decoded.indices, values=pred_str_labels, dense_shape=self.decoded.dense_shape) true_str_labels = tf.as_string(self.labels.values) true_tensor = tf.SparseTensor(indices=self.labels.indices, values=true_str_labels, dense_shape=self.labels.dense_shape) self.edit_distance = tf.reduce_mean(tf.edit_distance(pred_tensor, true_tensor, normalize=True), name='distance')
Example #28
Source File: text_demo.py From tensorboard with Apache License 2.0 | 5 votes |
def simple_example(step): # Text summaries log arbitrary text. This can be encoded with ASCII or # UTF-8. Here's a simple example, wherein we greet the user on each # step: step_string = tf.as_string(step) greeting = tf.strings.join(["Hello from step ", step_string, "!"]) tf.compat.v1.summary.text("greeting", greeting)
Example #29
Source File: as_string_op_test.py From deep_image_model with Apache License 2.0 | 4 votes |
def testComplex(self): float_inputs_ = [0, 1, -1, 0.5, 0.25, 0.125, complex("INF"), complex("NAN"), complex("-INF")] complex_inputs_ = [(x + (x + 1) * 1j) for x in float_inputs_] with self.test_session(): for dtype in (tf.complex64,): input_ = tf.placeholder(dtype) def clean_nans(s_l): return [s.decode("ascii").replace("-nan", "nan") for s in s_l] output = tf.as_string(input_, shortest=True) result = output.eval(feed_dict={input_: complex_inputs_}) self.assertAllEqual(clean_nans(result), ["(%g,%g)" % (x.real, x.imag) for x in complex_inputs_]) output = tf.as_string(input_, scientific=True) result = output.eval(feed_dict={input_: complex_inputs_}) self.assertAllEqual(clean_nans(result), ["(%e,%e)" % (x.real, x.imag) for x in complex_inputs_]) output = tf.as_string(input_) result = output.eval(feed_dict={input_: complex_inputs_}) self.assertAllEqual(clean_nans(result), ["(%f,%f)" % (x.real, x.imag) for x in complex_inputs_]) output = tf.as_string(input_, width=3) result = output.eval(feed_dict={input_: complex_inputs_}) self.assertAllEqual(clean_nans(result), ["(%03f,%03f)" % (x.real, x.imag) for x in complex_inputs_]) output = tf.as_string(input_, width=3, fill="0", shortest=True) result = output.eval(feed_dict={input_: complex_inputs_}) self.assertAllEqual(clean_nans(result), ["(%03g,%03g)" % (x.real, x.imag) for x in complex_inputs_]) output = tf.as_string(input_, precision=10, width=3) result = output.eval(feed_dict={input_: complex_inputs_}) self.assertAllEqual(clean_nans(result), ["(%03.10f,%03.10f)" % (x.real, x.imag) for x in complex_inputs_]) output = tf.as_string(input_, precision=10, width=3, fill="0", shortest=True) result = output.eval(feed_dict={input_: complex_inputs_}) self.assertAllEqual(clean_nans(result), ["(%03.10g,%03.10g)" % (x.real, x.imag) for x in complex_inputs_]) with self.assertRaisesOpError("Cannot select both"): output = tf.as_string(input_, scientific=True, shortest=True) output.eval(feed_dict={input_: complex_inputs_})
Example #30
Source File: test_load_pairs.py From PReMVOS with MIT License | 4 votes |
def main(): n_pers = 1454 image_list = np.genfromtxt('/fastwork/luiten/mywork/data/CUHK03/number_of_images.csv', delimiter=',') image_list = image_list.astype(np.int32) num_images = tf.constant(image_list) rand = tf.random_uniform([7], maxval=tf.int32.max, dtype=tf.int32) sample_same_person = rand[0] % 2 pers_id_1 = ((rand[1]-1) % n_pers) + 1 cam_id_1 = ((rand[2]-1) % 2) + 1 pers_1_n_imgs = num_images[n_pers * (cam_id_1 - 1) + pers_id_1][2] img_id_1 = ((rand[3] - 1) % pers_1_n_imgs) + 1 def if_same_person(): pers_id_2 = pers_id_1 cam_id_2 = cam_id_1 img_id_2 = ((rand[4] - 1) % (pers_1_n_imgs - 1)) + 1 img_id_2 = tf.cond(img_id_2 >= img_id_1, lambda: img_id_2 + 1, lambda: img_id_2) return pers_id_2, cam_id_2, img_id_2 def if_not_same_person(): pers_id_2 = ((rand[4]-1) % (n_pers-1)) + 1 pers_id_2 = tf.cond(pers_id_2 >= pers_id_1, lambda: pers_id_2 + 1, lambda: pers_id_2) cam_id_2 = ((rand[5]-1) % 2) + 1 pers_2_n_imgs = num_images[n_pers * (cam_id_2 - 1) + pers_id_2][2] img_id_2 = ((rand[6] - 1) % (pers_2_n_imgs -1)) + 1 return pers_id_2, cam_id_2, img_id_2 pers_id_2, cam_id_2, img_id_2 = tf.cond(tf.cast(sample_same_person,tf.bool),if_same_person,if_not_same_person) # pair = tf.stack([sample_same_person, pers_id_1,cam_id_1,img_id_1,pers_id_2,cam_id_2,img_id_2]) img1 = tf.as_string(pers_id_1) + "_" + tf.as_string(cam_id_1) + "_" + tf.as_string(img_id_1) + ".png" img2 = tf.as_string(pers_id_2) + "_" + tf.as_string(cam_id_2) + "_" + tf.as_string(img_id_2) + ".png" pair = tf.stack([img1, img2, tf.as_string(sample_same_person)]) # image_reader = tf.WholeFileReader() # _, image_file1 = image_reader.read(img1) # _, image_file2 = image_reader.read(img2) print(image_list.shape) batch = tf.train.batch([pair], batch_size=3) sess = tf.Session() sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess) for i in range(1): x = sess.run([batch]) print(x)