Python tensorflow.sigmoid() Examples
The following are 30
code examples of tensorflow.sigmoid().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: model_utils.py From lm with MIT License | 6 votes |
def __call__(self, inputs, state, scope=None): num_proj = self._num_units if self._num_proj is None else self._num_proj c_prev = tf.slice(state, [0, 0], [-1, self._num_units]) m_prev = tf.slice(state, [0, self._num_units], [-1, num_proj]) input_size = inputs.get_shape().with_rank(2)[1] if input_size.value is None: raise ValueError("Could not infer input size from inputs.get_shape()[-1]") with tf.variable_scope(type(self).__name__, initializer=self._initializer): # "LSTMCell" # i = input_gate, j = new_input, f = forget_gate, o = output_gate cell_inputs = tf.concat(1, [inputs, m_prev]) lstm_matrix = tf.nn.bias_add(tf.matmul(cell_inputs, self._concat_w), self._b) i, j, f, o = tf.split(1, 4, lstm_matrix) c = tf.sigmoid(f + 1.0) * c_prev + tf.sigmoid(i) * tf.tanh(j) m = tf.sigmoid(o) * tf.tanh(c) if self._num_proj is not None: m = tf.matmul(m, self._concat_w_proj) new_state = tf.concat(1, [c, m]) return m, new_state
Example #2
Source File: common_layers.py From fine-lm with MIT License | 6 votes |
def conv_lstm(x, kernel_size, filters, padding="SAME", dilation_rate=(1, 1), name=None, reuse=None): """Convolutional LSTM in 1 dimension.""" with tf.variable_scope( name, default_name="conv_lstm", values=[x], reuse=reuse): gates = conv( x, 4 * filters, kernel_size, padding=padding, dilation_rate=dilation_rate) g = tf.split(layer_norm(gates, 4 * filters), 4, axis=3) new_cell = tf.sigmoid(g[0]) * x + tf.sigmoid(g[1]) * tf.tanh(g[3]) return tf.sigmoid(g[2]) * tf.tanh(new_cell)
Example #3
Source File: model.py From PathCon with MIT License | 6 votes |
def _build_model(self): # define initial relation features if self.use_context or (self.use_path and self.path_type == 'rnn'): self._build_relation_feature() self.scores = 0.0 if self.use_context: edges_list, mask_list = self._get_neighbors_and_masks(self.labels, self.entity_pairs, self.train_edges) self.aggregators = self._get_neighbor_aggregators() # define aggregators for each layer self.aggregated_neighbors = self._aggregate_neighbors(edges_list, mask_list) # [batch_size, n_relations] self.scores += self.aggregated_neighbors if self.use_path: if self.path_type == 'embedding': self.W, self.b = self._get_weight_and_bias(self.n_paths, self.n_relations) # [batch_size, n_relations] self.scores += tf.sparse_tensor_dense_matmul(self.path_features, self.W) + self.b elif self.path_type == 'rnn': rnn_output = self._rnn(self.path_ids) # [batch_size, path_samples, n_relations] self.scores += self._aggregate_paths(rnn_output) # narrow the range of scores to [0, 1] for the ease of calculating ranking-based metrics self.scores_normalized = tf.sigmoid(self.scores)
Example #4
Source File: common_layers.py From fine-lm with MIT License | 6 votes |
def gated_linear_unit_layer(x, name=None): """Gated linear unit layer. Paper: Language Modeling with Gated Convolutional Networks. Link: https://arxiv.org/abs/1612.08083 x = Wx * sigmoid(W'x). Args: x: A tensor name: A string Returns: A tensor of the same shape as x. """ with tf.variable_scope(name, default_name="glu_layer", values=[x]): depth = shape_list(x)[-1] x = tf.layers.dense(x, depth * 2, activation=None) x, gating_x = tf.split(x, 2, axis=-1) return x * tf.nn.sigmoid(gating_x)
Example #5
Source File: blocks_lstm.py From DOTA_models with Apache License 2.0 | 6 votes |
def _Apply(self, *args): xtransform = self._TransformInputs(*args) depth_axis = len(self._output_shape) - 1 if self.hidden is not None: htransform = self._TransformHidden(self.hidden) f, i, j, o = tf.split( value=htransform + xtransform, num_or_size_splits=4, axis=depth_axis) else: f, i, j, o = tf.split( value=xtransform, num_or_size_splits=4, axis=depth_axis) if self.cell is not None: self.cell = tf.sigmoid(f) * self.cell + tf.sigmoid(i) * tf.tanh(j) else: self.cell = tf.sigmoid(i) * tf.tanh(j) self.hidden = tf.sigmoid(o) * tf.tanh(self.cell) return self.hidden
Example #6
Source File: loss.py From tensorflow_constrained_optimization with Apache License 2.0 | 6 votes |
def is_normalized(self): """Returns true only if the associated loss is normalized. We call a classification loss "normalized" if there exists a random variable Z such that, for any values of the predictions and weights: > loss(predictions, weights) = E[zero-one-loss(predictions + Z, weights)] where the expectation is taken over Z. Intuitively, a normalized loss can be interpreted as a smoothed zero-one loss (e.g. a ramp or a sigmoid), while a non-normalized loss will typically be some unbounded relaxation (e.g. a hinge). Returns: True if the loss is normalized. False otherwise. """
Example #7
Source File: models.py From tf2-yolo3 with Apache License 2.0 | 6 votes |
def yolo_boxes(pred, anchors, num_classes, training=True): # pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...classes)) grid_size = tf.shape(pred)[1:3][::-1] grid_y, grid_x = tf.shape(pred)[1], tf.shape(pred)[2] box_xy, box_wh, objectness, class_probs = tf.split(pred, (2, 2, 1, num_classes), axis=-1) box_xy = tf.sigmoid(box_xy) objectness = tf.sigmoid(objectness) class_probs = tf.nn.softmax(class_probs) pred_box = tf.concat((box_xy, box_wh), axis=-1) # original xywh for loss # !!! grid[x][y] == (y, x) grid = tf.meshgrid(tf.range(grid_x), tf.range(grid_y)) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2] box_xy = (box_xy + tf.cast(grid, tf.float32)) / tf.cast(grid_size, tf.float32) box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2 box_x2y2 = box_xy + box_wh / 2 bbox = tf.concat([box_x1y1, box_x2y2], axis=-1) return bbox, objectness, class_probs, pred_box
Example #8
Source File: post_processing_builder.py From object_detector_app with MIT License | 6 votes |
def _build_score_converter(score_converter_config): """Builds score converter based on the config. Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on the config. Args: score_converter_config: post_processing_pb2.PostProcessing.score_converter. Returns: Callable score converter op. Raises: ValueError: On unknown score converter. """ if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY: return tf.identity if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID: return tf.sigmoid if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX: return tf.nn.softmax raise ValueError('Unknown score converter.')
Example #9
Source File: post_processing_builder.py From DOTA_models with Apache License 2.0 | 6 votes |
def _build_score_converter(score_converter_config): """Builds score converter based on the config. Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on the config. Args: score_converter_config: post_processing_pb2.PostProcessing.score_converter. Returns: Callable score converter op. Raises: ValueError: On unknown score converter. """ if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY: return tf.identity if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID: return tf.sigmoid if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX: return tf.nn.softmax raise ValueError('Unknown score converter.')
Example #10
Source File: post_processing_builder.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _build_score_converter(score_converter_config, logit_scale): """Builds score converter based on the config. Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on the config. Args: score_converter_config: post_processing_pb2.PostProcessing.score_converter. logit_scale: temperature to use for SOFTMAX score_converter. Returns: Callable score converter op. Raises: ValueError: On unknown score converter. """ if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY: return _score_converter_fn_with_logit_scale(tf.identity, logit_scale) if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID: return _score_converter_fn_with_logit_scale(tf.sigmoid, logit_scale) if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX: return _score_converter_fn_with_logit_scale(tf.nn.softmax, logit_scale) raise ValueError('Unknown score converter.')
Example #11
Source File: box_predictor_builder.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def build_score_converter(score_converter_config, is_training): """Builds score converter based on the config. Builds one of [tf.identity, tf.sigmoid] score converters based on the config and whether the BoxPredictor is for training or inference. Args: score_converter_config: box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.score_converter. is_training: Indicates whether the BoxPredictor is in training mode. Returns: Callable score converter op. Raises: ValueError: On unknown score converter. """ if score_converter_config == ( box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.IDENTITY): return tf.identity if score_converter_config == ( box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.SIGMOID): return tf.identity if is_training else tf.sigmoid raise ValueError('Unknown score converter.')
Example #12
Source File: lstm_cell.py From RDPG with MIT License | 5 votes |
def __call__(self, inputs, state, scope=None): """Long short-term memory cell (LSTM).""" with tf.variable_scope(scope or type(self).__name__): # "BasicLSTMCell" # Parameters of gates are concatenated into one multiply for efficiency. c, h = tf.split(1, 2, state) concat = self._linear([inputs, h], 4 * self._num_units, True) # i = input_gate, j = new_input, f = forget_gate, o = output_gate i, j, f, o = tf.split(1, 4, concat) new_c = c * tf.sigmoid(f + self._forget_bias) + tf.sigmoid(i) * tf.tanh(j) new_h = tf.tanh(new_c) * tf.sigmoid(o) return new_h, tf.concat(1, [new_c, new_h])
Example #13
Source File: distributions.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def __init__(self, logits): self.logits = logits self.ps = tf.sigmoid(logits)
Example #14
Source File: model.py From DexiNed with MIT License | 5 votes |
def pre_process_binary_cross_entropy(bc_loss,input, label,arg, use_tf_loss=False): # preprocess data y = label loss = 0 w_loss=1.0 preds = [] for tmp_p in input: # tmp_p = input[i] # loss processing tmp_y = tf.cast(y, dtype=tf.float32) mask = tf.dtypes.cast(tmp_y > 0., tf.float32) b,h,w,c=mask.get_shape() positives = tf.math.reduce_sum(mask, axis=[1, 2, 3], keepdims=True) # positives = tf.math.reduce_sum(mask) negatives = h*w*c-positives # negatives = tf.math.reduce_sum(1. - tmp_y) beta2 = positives / (negatives + positives) # negatives in hed beta = negatives/ (positives + negatives) # positives in hed # pos_w = beta/(1-beta) pos_w = tf.where(tf.greater(y, 0.0), beta, beta2) # pos_w = tf.where(tf.equal(mask, 0.0), beta, beta2) logits = tf.sigmoid(tmp_p) l_cost = bc_loss(y_true=tmp_y, y_pred=logits, sample_weight=pos_w) # cost = tf.math.reduce_mean(cost * (1 - beta)) # l_cost= tf.where(tf.equal(positives, 0.0), 0.0, cost) preds.append(logits) loss += (l_cost*1.0) # mask[mask != 0] = negatives / (positives + negatives) # mask[mask == 0] = positives / (positives + negatives) return preds, loss
Example #15
Source File: distributions.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def __init__(self, logits): self.logits = logits self.ps = tf.sigmoid(logits)
Example #16
Source File: distributions.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def __init__(self, logits): self.logits = logits self.ps = tf.sigmoid(logits)
Example #17
Source File: enas_common_ops.py From deep_architect with MIT License | 5 votes |
def lstm(x, prev_c, prev_h, w): ifog = tf.matmul(tf.concat([x, prev_h], axis=1), w) i, f, o, g = tf.split(ifog, 4, axis=1) i = tf.sigmoid(i) f = tf.sigmoid(f) o = tf.sigmoid(o) g = tf.tanh(g) next_c = i * g + f * prev_c next_h = o * tf.tanh(next_c) return next_c, next_h
Example #18
Source File: model_deploy_test.py From ctw-baseline with MIT License | 5 votes |
def LogisticClassifier(inputs, labels, scope=None, reuse=None): with tf.variable_scope(scope, 'LogisticClassifier', [inputs, labels], reuse=reuse): predictions = slim.fully_connected(inputs, 1, activation_fn=tf.sigmoid, scope='fully_connected') slim.losses.log_loss(predictions, labels) return predictions
Example #19
Source File: model_deploy_test.py From ctw-baseline with MIT License | 5 votes |
def BatchNormClassifier(inputs, labels, scope=None, reuse=None): with tf.variable_scope(scope, 'BatchNormClassifier', [inputs, labels], reuse=reuse): inputs = slim.batch_norm(inputs, decay=0.1) predictions = slim.fully_connected(inputs, 1, activation_fn=tf.sigmoid, scope='fully_connected') slim.losses.log_loss(predictions, labels) return predictions
Example #20
Source File: model.py From BetaElephant with MIT License | 5 votes |
def get_model(name): name = functools.partial('{}-{}'.format, name) self_pos = tf.placeholder(Config.dtype, Config.data_shape, name='self_pos') self_ability = tf.placeholder(Config.dtype, Config.data_shape, name='self_ability') enemy_pos = tf.placeholder(Config.dtype, Config.data_shape, name='enemy_pos') input_label = tf.placeholder(Config.dtype, Config.label_shape, name='input_label') x = tf.concat(3, [self_pos, self_ability, enemy_pos], name=name('input_concat')) y = input_label nl = tf.nn.tanh def conv_pip(name, x): name = functools.partial('{}_{}'.format, name) x = conv2d(name('0'), x, Config.data_shape[3]*2, kernel=3, stride=1, nl=nl) x = conv2d(name('1'), x, Config.data_shape[3], kernel=3, stride=1, nl=nl) return x pred = conv_pip(name('conv0'), x) for layer in range(5): pred_branch = tf.concat(3, [pred,x], name=name('concate%d'%layer)) pred += conv_pip(name('conv%d'%(layer+1)), pred_branch) pred = tf.sigmoid(5*pred, name=name('control_tanh')) # another formula of y*logy loss = -tf.reduce_sum(tf.mul(pred, y), reduction_indices=[1,2,3]) pred = tf.mul(pred, self_ability) return Model([self_pos, self_ability, enemy_pos], input_label, loss, pred)
Example #21
Source File: filters.py From exposure with MIT License | 5 votes |
def filter_param_regressor(self, features): return tf.sigmoid(features)
Example #22
Source File: filters.py From exposure with MIT License | 5 votes |
def filter_param_regressor(self, features): return tf.sigmoid(features)
Example #23
Source File: filters.py From exposure with MIT License | 5 votes |
def filter_param_regressor(self, features): return tf.sigmoid(features)
Example #24
Source File: filters.py From exposure with MIT License | 5 votes |
def get_mask(self, img, mask_parameters): with tf.name_scope(name='mask'): # Five parameters for one filter filter_input_range = 5 assert mask_parameters.shape[1] == self.get_num_mask_parameters() mask_parameters = tanh_range( l=-filter_input_range, r=filter_input_range, initial=0)(mask_parameters) size = list(map(int, img.shape[1:3])) grid = np.zeros(shape=[1] + size + [2], dtype=np.float32) shorter_edge = min(size[0], size[1]) for i in range(size[0]): for j in range(size[1]): grid[0, i, j, 0] = (i + (shorter_edge - size[0]) / 2.0) / shorter_edge - 0.5 grid[0, i, j, 1] = (j + (shorter_edge - size[1]) / 2.0) / shorter_edge - 0.5 grid = tf.constant(grid) # (Ax)^2 + (By)^2 + C inp = (grid[:, :, :, 0, None] * mask_parameters[:, None, None, 0, None]) ** 2 + \ (grid[:, :, :, 1, None] * mask_parameters[:, None, None, 1, None]) ** 2 + \ mask_parameters[:, None, None, 2, None] - filter_input_range # Sharpness and inversion inp *= self.cfg.maximum_sharpness * mask_parameters[:, None, None, 3, None] / filter_input_range mask = tf.sigmoid(inp) # Strength mask *= mask_parameters[:, None, None, 4, None] / filter_input_range * 0.5 + 0.5 if not self.use_masking(): print('* Masking Disabled') mask = mask * 0 + 1 else: print('* Masking Enabled') print('mask', mask.shape) return mask
Example #25
Source File: filters.py From exposure with MIT License | 5 votes |
def get_num_mask_parameters(self): return 5 # Input: no need for tanh or sigmoid # Closer to 1 values are applied by filter more strongly # no additional TF variables inside
Example #26
Source File: filters.py From exposure with MIT License | 5 votes |
def filter_param_regressor(self, features): return tf.sigmoid(features)
Example #27
Source File: filters.py From exposure with MIT License | 5 votes |
def get_mask(self, img, mask_parameters): if not self.use_masking(): print('* Masking Disabled') return tf.ones(shape=(1, 1, 1, 1), dtype=tf.float32) else: print('* Masking Enabled') with tf.name_scope(name='mask'): # Six parameters for one filter filter_input_range = 5 assert mask_parameters.shape[1] == self.get_num_mask_parameters() mask_parameters = tanh_range( l=-filter_input_range, r=filter_input_range, initial=0)(mask_parameters) size = list(map(int, img.shape[1:3])) grid = np.zeros(shape=[1] + size + [2], dtype=np.float32) shorter_edge = min(size[0], size[1]) for i in range(size[0]): for j in range(size[1]): grid[0, i, j, 0] = (i + (shorter_edge - size[0]) / 2.0) / shorter_edge - 0.5 grid[0, i, j, 1] = (j + (shorter_edge - size[1]) / 2.0) / shorter_edge - 0.5 grid = tf.constant(grid) # Ax + By + C * L + D inp = grid[:, :, :, 0, None] * mask_parameters[:, None, None, 0, None] + \ grid[:, :, :, 1, None] * mask_parameters[:, None, None, 1, None] + \ mask_parameters[:, None, None, 2, None] * (rgb2lum(img) - 0.5) + \ mask_parameters[:, None, None, 3, None] * 2 # Sharpness and inversion inp *= self.cfg.maximum_sharpness * mask_parameters[:, None, None, 4, None] / filter_input_range mask = tf.sigmoid(inp) # Strength mask = mask * ( mask_parameters[:, None, None, 5, None] / filter_input_range * 0.5 + 0.5) * (1 - self.cfg.minimum_strength) + self.cfg.minimum_strength print('mask', mask.shape) return mask
Example #28
Source File: filters.py From exposure with MIT License | 5 votes |
def get_num_mask_parameters(self): return 6 # Input: no need for tanh or sigmoid # Closer to 1 values are applied by filter more strongly # no additional TF variables inside
Example #29
Source File: activation.py From icme2019 with MIT License | 5 votes |
def call(self, inputs, **kwargs): inputs_normed = self.bn(inputs) # tf.layers.batch_normalization( # inputs, axis=self.axis, epsilon=self.epsilon, center=False, scale=False) x_p = tf.sigmoid(inputs_normed) return self.alphas * (1.0 - x_p) * inputs + x_p * inputs
Example #30
Source File: model.py From BetaElephant with MIT License | 5 votes |
def get_model(name): name = functools.partial('{}-{}'.format, name) self_pos = tf.placeholder(Config.dtype, Config.data_shape, name='self_pos') self_ability = tf.placeholder(Config.dtype, Config.data_shape, name='self_ability') enemy_pos = tf.placeholder(Config.dtype, Config.data_shape, name='enemy_pos') input_label = tf.placeholder(Config.dtype, Config.label_shape, name='input_label') x = tf.concat(3, [self_pos, self_ability, enemy_pos], name=name('input_concat')) y = input_label nl = tf.nn.tanh def conv_pip(name, x, nl): name = functools.partial('{}_{}'.format, name) x = conv2d(name('0'), x, Config.data_shape[3]*2, kernel=3, stride=1, nl=nl) x = conv2d(name('1'), x, Config.data_shape[3], kernel=3, stride=1, nl=nl) return x for layer in range(5): x_branch = conv_pip(name('conv%d'%layer), x, nl) x = tf.concat(3, [x,x_branch], name=name('concate%d'%layer)) x = conv_pip(name('conv5'), x, nl=None) pred = tf.sigmoid(x) # another formula of y*logy loss = -tf.log(tf.reduce_sum(tf.mul(x, y), reduction_indices=[1,2,3])) loss += - 0.1 * tf.log(tf.reduce_sum(tf.mul(x, self_ability), reduction_indices=[1,2,3])) pred = tf.mul(pred, self_ability) return Model([self_pos, self_ability, enemy_pos], input_label, loss, pred)