Python tensorflow.WholeFileReader() Examples
The following are 30
code examples of tensorflow.WholeFileReader().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: kpn_data_provider.py From burst-denoising with Apache License 2.0 | 6 votes |
def load_batch_noised(depth, dataset_dir, batch_size=32, height=64, width=64, degamma=1., sig_range=20.): filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)] filename_queue = tf.train.string_input_producer(filenames) noised_stack = None while noised_stack == None: _, image_file = tf.WholeFileReader().read(filename_queue) image = tf.image.decode_image(image_file) noised_stack, denoised_stack, sig_stack = make_stack_noised((tf.cast(image[0], tf.float32) / 255.)**degamma, height, width, depth, sig_range) # Batch it up. noised, denoised, sig = tf.train.shuffle_batch( [noised_stack, denoised_stack, sig_stack], batch_size=batch_size, num_threads=2, capacity=1024 + 3 * batch_size, enqueue_many=True, min_after_dequeue=500) return noised, denoised, sig
Example #2
Source File: input.py From UnFlow with MIT License | 6 votes |
def _read_flow(filenames, num_epochs=None): """Given a list of filenames, constructs a reader op for ground truth flow files.""" filename_queue = tf.train.string_input_producer(filenames, shuffle=False, capacity=len(filenames), num_epochs=num_epochs) reader = tf.WholeFileReader() _, value = reader.read(filename_queue) value = tf.reshape(value, [1]) value_width = tf.substr(value, 4, 4) value_height = tf.substr(value, 8, 4) width = tf.reshape(tf.decode_raw(value_width, out_type=tf.int32), []) height = tf.reshape(tf.decode_raw(value_height, out_type=tf.int32), []) value_flow = tf.substr(value, 12, 8 * width * height) flow = tf.decode_raw(value_flow, out_type=tf.float32) flow = tf.reshape(flow, [height, width, 2]) mask = tf.to_float(tf.logical_and(flow[:, :, 0] < 1e9, flow[:, :, 1] < 1e9)) mask = tf.reshape(mask, [height, width, 1]) return flow, mask
Example #3
Source File: validate.py From tf-vaegan with MIT License | 6 votes |
def SingleFileReader(filename, shape, rtype='tanh', ext='jpg'): n, h, w, c = shape if ext == 'jpg' or ext == 'jpeg': decoder = tf.image.decode_jpeg elif ext == 'png': decoder = tf.image.decode_png else: raise ValueError('Unsupported file type: {:s}.'.format(ext) + ' (only *.png and *.jpg are supported') filename_queue = tf.train.string_input_producer(filename, shuffle=False) reader = tf.WholeFileReader() key, value = reader.read(filename_queue) img = decoder(value, channels=c) img = tf.image.crop_to_bounding_box(img, 0, 0, h, w) img = tf.to_float(img) if rtype == 'tanh': img = tf.div(img, 127.5) - 1. imgs = tf.train.batch( [img], batch_size=n, capacity=1) return imgs, key
Example #4
Source File: reader_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testInfiniteEpochs(self): with self.test_session() as sess: reader = tf.WholeFileReader("test_reader") queue = tf.FIFOQueue(99, [tf.string], shapes=()) enqueue = queue.enqueue_many([self._filenames]) key, value = reader.read(queue) enqueue.run() self._ExpectRead(sess, key, value, 0) self._ExpectRead(sess, key, value, 1) enqueue.run() self._ExpectRead(sess, key, value, 2) self._ExpectRead(sess, key, value, 0) self._ExpectRead(sess, key, value, 1) enqueue.run() self._ExpectRead(sess, key, value, 2) self._ExpectRead(sess, key, value, 0)
Example #5
Source File: data.py From layered-scene-inference with Apache License 2.0 | 6 votes |
def img_queue_loader(self, img_list, nc=3): """Load images into queue.""" with tf.name_scope('queued_data_loader'): filename_queue = tf.train.string_input_producer( img_list, seed=0, shuffle=True) image_reader = tf.WholeFileReader() _, image_file = image_reader.read(filename_queue) image = tf.image.decode_image(image_file) image = tf.cast(tf.image.decode_image(image_file), 'float32') image *= 1.0 / 255 # since images are loaded in [0, 255] image = tf.slice(image, [0, 0, 0], [-1, -1, nc]) orig_shape = tf.shape(image) orig_shape.set_shape((3)) image = tf.image.resize_images( image, [self.h, self.w], method=tf.image.ResizeMethod.AREA) image.set_shape((self.h, self.w, nc)) return image, orig_shape
Example #6
Source File: input.py From UnFlow with MIT License | 6 votes |
def _read_flow(filenames, num_epochs=None): """Given a list of filenames, constructs a reader op for ground truth flow files.""" filename_queue = tf.train.string_input_producer(filenames, shuffle=False, capacity=len(filenames), num_epochs=num_epochs) reader = tf.WholeFileReader() _, value = reader.read(filename_queue) value = tf.reshape(value, [1]) value_width = tf.substr(value, 4, 4) value_height = tf.substr(value, 8, 4) width = tf.reshape(tf.decode_raw(value_width, out_type=tf.int32), []) height = tf.reshape(tf.decode_raw(value_height, out_type=tf.int32), []) value_flow = tf.substr(value, 12, 8 * 436 * 1024) flow = tf.decode_raw(value_flow, out_type=tf.float32) return tf.reshape(flow, [436, 1024, 2])
Example #7
Source File: tensorcheck_test.py From in-silico-labeling with Apache License 2.0 | 6 votes |
def setUp(self): super(ShapeTest, self).setUp() filename_op = tf.train.string_input_producer([ os.path.join(os.environ['TEST_SRCDIR'], 'isl/testdata/research_logo.jpg') ]) reader = tf.WholeFileReader() _, encoded_image_op = reader.read(filename_op) image_op = tf.image.decode_jpeg(encoded_image_op, channels=3) self.correct_shape_op = tf.identity(image_op) self.correct_shape_op.set_shape([250, 250, 3]) self.correct_lt = lt.LabeledTensor(self.correct_shape_op, ['x', 'y', 'color']) self.incorrect_shape_op = tf.identity(image_op) self.incorrect_shape_op.set_shape([50, 50, 3]) self.incorrect_lt = lt.LabeledTensor(self.incorrect_shape_op, ['x', 'y', 'color']) self.okay_lt = tensorcheck.shape(self.correct_lt) self.error_lt = tensorcheck.shape(self.incorrect_lt)
Example #8
Source File: test_util.py From in-silico-labeling with Apache License 2.0 | 6 votes |
def load_tensorflow_image(self, channel_label: str, image_name: str) -> lt.LabeledTensor: # All images will be cropped to this size. crop_size = 1024 filename_op = tf.train.string_input_producer([self.data_path(image_name)]) wfr = tf.WholeFileReader() _, encoded_png_op = wfr.read(filename_op) image_op = tf.image.decode_png( tf.reshape(encoded_png_op, shape=[]), channels=1, dtype=tf.uint16) image_op = image_op[:crop_size, :crop_size, :] image_op = tf.to_float(image_op) / np.iinfo(np.uint16).max image_op = tf.reshape(image_op, [1, 1024, 1024, 1]) return lt.LabeledTensor( image_op, ['batch', 'row', 'column', ('channel', [channel_label])])
Example #9
Source File: word2vec.py From tensorflow_nlp with Apache License 2.0 | 6 votes |
def read_word_freq(filename): filename_queue = tf.train.string_input_producer([filename]) reader = tf.WholeFileReader() key, value = reader.read(filename_queue) lines = tf.string_split([value], "\n") with tf.Session() as sess: # Start populating the filename queue. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) sess.run([lines]) lines_eval = lines.eval() result = [] for line in lines_eval.values: s = line.split() result.append((s[0], int(s[1]))) coord.request_stop() coord.join(threads) return result
Example #10
Source File: GAN_models.py From WassersteinGAN.tensorflow with MIT License | 6 votes |
def _read_input(self, filename_queue): class DataRecord(object): pass reader = tf.WholeFileReader() key, value = reader.read(filename_queue) record = DataRecord() decoded_image = tf.image.decode_jpeg(value, channels=3) # Assumption:Color images are read and are to be generated # decoded_image_4d = tf.expand_dims(decoded_image, 0) # resized_image = tf.image.resize_bilinear(decoded_image_4d, [self.target_image_size, self.target_image_size]) # record.input_image = tf.squeeze(resized_image, squeeze_dims=[0]) cropped_image = tf.cast( tf.image.crop_to_bounding_box(decoded_image, 55, 35, self.crop_image_size, self.crop_image_size), tf.float32) decoded_image_4d = tf.expand_dims(cropped_image, 0) resized_image = tf.image.resize_bilinear(decoded_image_4d, [self.resized_image_size, self.resized_image_size]) record.input_image = tf.squeeze(resized_image, squeeze_dims=[0]) return record
Example #11
Source File: kpn_data_provider.py From burst-denoising with Apache License 2.0 | 6 votes |
def load_batch_hqjitter(dataset_dir, patches_per_img=32, min_queue=8, BURST_LENGTH=1, batch_size=32, repeats=1, height=64, width=64, degamma=1., to_shift=1., upscale=1, jitter=1, smalljitter=1): filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)] filename_queue = tf.train.string_input_producer(filenames) _, image_file = tf.WholeFileReader().read(filename_queue) image = tf.image.decode_image(image_file) patches = make_stack_hqjitter((tf.cast(image[0], tf.float32) / 255.)**degamma, height, width, patches_per_img, BURST_LENGTH, to_shift, upscale, jitter) unique = batch_size//repeats # Batch it up. patches = tf.train.shuffle_batch( [patches], batch_size=unique, num_threads=2, capacity=min_queue + 3 * batch_size, enqueue_many=True, min_after_dequeue=min_queue) print('PATCHES =================',patches.get_shape().as_list()) patches = make_batch_hqjitter(patches, BURST_LENGTH, batch_size, repeats, height, width, to_shift, upscale, jitter, smalljitter) return patches
Example #12
Source File: kpn_data_provider.py From burst-denoising with Apache License 2.0 | 6 votes |
def load_batch_demosaic(BURST_LENGTH, dataset_dir, batch_size=32, height=64, width=64, degamma=1., to_shift=1., upscale=1, jitter=1): filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)] filename_queue = tf.train.string_input_producer(filenames) mosaic = None while mosaic == None: _, image_file = tf.WholeFileReader().read(filename_queue) image = tf.image.decode_image(image_file) mosaic, demosaic, shift = make_stack_demosaic((tf.cast(image[0], tf.float32) / 255.)**degamma, height, width, 128, BURST_LENGTH, to_shift, upscale, jitter) # Batch it up. mosaic, demosaic, shift = tf.train.shuffle_batch( [mosaic, demosaic, shift], batch_size=batch_size, num_threads=2, capacity=500 + 3 * batch_size, enqueue_many=True, min_after_dequeue=100) return mosaic, demosaic, shift
Example #13
Source File: TrainLSP.py From deeppose with GNU General Public License v3.0 | 6 votes |
def read_my_file_format(filename_queue): image_reader = tf.WholeFileReader() _, image_data = image_reader.read(filename_queue) # Convert from a string to a vector of uint8 that is record_bytes long. record_bytes = tf.decode_raw(image_data, tf.uint8) # The first bytes represent the label, which we convert from uint8->float32. labels_ = tf.cast(tf.slice(record_bytes, [0], [LSPGlobals.TotalLabels]), tf.float32) # The remaining bytes after the label represent the image, which we reshape # from [depth * height * width] to [depth, height, width]. depth_major = tf.reshape(tf.slice(record_bytes, [LSPGlobals.TotalLabels], [LSPGlobals.TotalImageBytes]), [FLAGS.input_size, FLAGS.input_size, FLAGS.input_depth]) # Convert from [depth, height, width] to [height, width, depth]. #processed_example = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32) return depth_major, labels_
Example #14
Source File: load_folder_images.py From Generative-Adversarial-Network-based-Synthesis-for-Supervised-Medical-Image-Segmentation with MIT License | 6 votes |
def load_images_from_idlist(idlist, batch_size, num_preprocess_threads, min_queue_examples, shift_param = -128, rescale_param = 128, resized_image_size = [128, 128], shuffle = True): # Make a queue of file names including all the image files in the relative # image directory. filename_queue = tf.train.string_input_producer(idlist, shuffle=shuffle) # Read an entire image file. If the images # are too large they could be split in advance to smaller files or use the Fixed # reader to split up the file. image_reader = tf.WholeFileReader() # Read a whole file from the queue, the first returned value in the tuple is the # filename which we are ignoring. _, image_file = image_reader.read(filename_queue) return _load_images(image_file, batch_size, num_preprocess_threads, min_queue_examples, shift_param, rescale_param, resized_image_size, shuffle)
Example #15
Source File: load_folder_images.py From Generative-Adversarial-Network-based-Synthesis-for-Supervised-Medical-Image-Segmentation with MIT License | 6 votes |
def load_images(folder_path_match, batch_size, num_preprocess_threads, min_queue_examples, shift_param = -128, rescale_param = 128, resized_image_size = [128, 128], shuffle = True): # Make a queue of file names including all the image files in the relative # image directory. filename_queue = tf.train.string_input_producer( tf.train.match_filenames_once(folder_path_match), shuffle=shuffle) # Read an entire image file. If the images # are too large they could be split in advance to smaller files or use the Fixed # reader to split up the file. image_reader = tf.WholeFileReader() # Read a whole file from the queue, the first returned value in the tuple is the # filename which we are ignoring. _, image_file = image_reader.read(filename_queue) return _load_images(image_file, batch_size, num_preprocess_threads, min_queue_examples, shift_param, rescale_param, resized_image_size, shuffle)
Example #16
Source File: inputs.py From TheNumericsOfGANs with MIT License | 6 votes |
def get_input_image(filename_queue, output_size, image_size, c_dim): # Read a record, getting filenames from the filename_queue. reader = tf.WholeFileReader() key, value = reader.read(filename_queue) image = tf.image.decode_image(value, channels=c_dim) image = tf.cast(image, tf.float32)/255. image_shape = tf.shape(image) image_height, image_width = image_shape[0], image_shape[1] offset_height = tf.cast((image_height - image_size)/2, tf.int32) offset_width = tf.cast((image_width - image_size)/2, tf.int32) image = tf.image.crop_to_bounding_box( image, offset_height, offset_width, image_size, image_size) image = tf.image.resize_images(image, [output_size, output_size]) image.set_shape([output_size, output_size, c_dim]) return image
Example #17
Source File: swivel.py From models with Apache License 2.0 | 5 votes |
def _count_matrix_input(self, filenames, submatrix_rows, submatrix_cols): """Creates ops that read submatrix shards from disk.""" random.shuffle(filenames) filename_queue = tf.train.string_input_producer(filenames) reader = tf.WholeFileReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64), 'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64), 'sparse_local_row': tf.VarLenFeature(dtype=tf.int64), 'sparse_local_col': tf.VarLenFeature(dtype=tf.int64), 'sparse_value': tf.VarLenFeature(dtype=tf.float32) }) global_row = features['global_row'] global_col = features['global_col'] sparse_local_row = features['sparse_local_row'].values sparse_local_col = features['sparse_local_col'].values sparse_count = features['sparse_value'].values sparse_indices = tf.concat( axis=1, values=[tf.expand_dims(sparse_local_row, 1), tf.expand_dims(sparse_local_col, 1)]) count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols], sparse_count) return global_row, global_col, count
Example #18
Source File: input.py From DeepLearningImplementations with MIT License | 5 votes |
def input_data(sess): FLAGS = tf.app.flags.FLAGS list_images = glob.glob(os.path.join(FLAGS.dataset, "*.jpg")) # Read each JPEG file reader = tf.WholeFileReader() filename_queue = tf.train.string_input_producer(list_images) key, value = reader.read(filename_queue) channels = FLAGS.channels image = tf.image.decode_jpeg(value, channels=channels, name="dataset_image") image.set_shape([None, None, channels]) # Crop and other random augmentations image = tf.image.random_flip_left_right(image) # image = tf.image.random_saturation(image, .95, 1.05) # image = tf.image.random_brightness(image, .05) # image = tf.image.random_contrast(image, .95, 1.05) # Center crop image = tf.image.central_crop(image, FLAGS.central_fraction) # Resize image = tf.image.resize_images(image, (FLAGS.img_size, FLAGS.img_size), method=tf.image.ResizeMethod.AREA) # Normalize image = normalize_image(image) # Format image to correct ordering if FLAGS.data_format == "NCHW": image = tf.transpose(image, (2,0,1)) # Using asynchronous queues img_batch = tf.train.batch([image], batch_size=FLAGS.batch_size, num_threads=FLAGS.num_threads, capacity=FLAGS.capacity_factor * FLAGS.batch_size, name='batch_input') return img_batch
Example #19
Source File: swivel.py From Action_Recognition_Zoo with MIT License | 5 votes |
def count_matrix_input(filenames, submatrix_rows, submatrix_cols): """Reads submatrix shards from disk.""" filename_queue = tf.train.string_input_producer(filenames) reader = tf.WholeFileReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64), 'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64), 'sparse_local_row': tf.VarLenFeature(dtype=tf.int64), 'sparse_local_col': tf.VarLenFeature(dtype=tf.int64), 'sparse_value': tf.VarLenFeature(dtype=tf.float32) }) global_row = features['global_row'] global_col = features['global_col'] sparse_local_row = features['sparse_local_row'].values sparse_local_col = features['sparse_local_col'].values sparse_count = features['sparse_value'].values sparse_indices = tf.concat(1, [tf.expand_dims(sparse_local_row, 1), tf.expand_dims(sparse_local_col, 1)]) count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols], sparse_count) queued_global_row, queued_global_col, queued_count = tf.train.batch( [global_row, global_col, count], batch_size=1, num_threads=4, capacity=32) queued_global_row = tf.reshape(queued_global_row, [submatrix_rows]) queued_global_col = tf.reshape(queued_global_col, [submatrix_cols]) queued_count = tf.reshape(queued_count, [submatrix_rows, submatrix_cols]) return queued_global_row, queued_global_col, queued_count
Example #20
Source File: create_cityscapes_tf_record.py From motion-rcnn with MIT License | 5 votes |
def _read_raw(paths): path_queue = tf.train.string_input_producer( paths, shuffle=False, capacity=len(paths), num_epochs=1) reader = tf.WholeFileReader() _, raw = reader.read(path_queue) return raw
Example #21
Source File: swivel.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _count_matrix_input(self, filenames, submatrix_rows, submatrix_cols): """Creates ops that read submatrix shards from disk.""" random.shuffle(filenames) filename_queue = tf.train.string_input_producer(filenames) reader = tf.WholeFileReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64), 'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64), 'sparse_local_row': tf.VarLenFeature(dtype=tf.int64), 'sparse_local_col': tf.VarLenFeature(dtype=tf.int64), 'sparse_value': tf.VarLenFeature(dtype=tf.float32) }) global_row = features['global_row'] global_col = features['global_col'] sparse_local_row = features['sparse_local_row'].values sparse_local_col = features['sparse_local_col'].values sparse_count = features['sparse_value'].values sparse_indices = tf.concat( axis=1, values=[tf.expand_dims(sparse_local_row, 1), tf.expand_dims(sparse_local_col, 1)]) count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols], sparse_count) return global_row, global_col, count
Example #22
Source File: swivel.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def _count_matrix_input(self, filenames, submatrix_rows, submatrix_cols): """Creates ops that read submatrix shards from disk.""" random.shuffle(filenames) filename_queue = tf.train.string_input_producer(filenames) reader = tf.WholeFileReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64), 'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64), 'sparse_local_row': tf.VarLenFeature(dtype=tf.int64), 'sparse_local_col': tf.VarLenFeature(dtype=tf.int64), 'sparse_value': tf.VarLenFeature(dtype=tf.float32) }) global_row = features['global_row'] global_col = features['global_col'] sparse_local_row = features['sparse_local_row'].values sparse_local_col = features['sparse_local_col'].values sparse_count = features['sparse_value'].values sparse_indices = tf.concat( axis=1, values=[tf.expand_dims(sparse_local_row, 1), tf.expand_dims(sparse_local_col, 1)]) count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols], sparse_count) return global_row, global_col, count
Example #23
Source File: 07_basic_filters.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def read_one_image(filename): """ This is just to demonstrate how to open an image in TensorFlow, but it's actually a lot easier to use Pillow """ filename_queue = tf.train.string_input_producer([filename]) image_reader = tf.WholeFileReader() _, image_file = image_reader.read(filename_queue) image = tf.image.decode_jpeg(image_file, channels=3) image = tf.cast(image, tf.float32) / 256.0 # cast to float to make conv2d work return image
Example #24
Source File: data_provider.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def provide_data_from_image_files(file_pattern, batch_size=32, shuffle=True, num_threads=1, patch_height=32, patch_width=32, colors=3): """Provides a batch of image data from image files. Args: file_pattern: A file pattern (glob), or 1D `Tensor` of file patterns. batch_size: The number of images in each minibatch. Defaults to 32. shuffle: Whether to shuffle the read images. Defaults to True. num_threads: Number of prefetching threads. Defaults to 1. patch_height: A Python integer. The read images height. Defaults to 32. patch_width: A Python integer. The read images width. Defaults to 32. colors: Number of channels. Defaults to 3. Returns: A float `Tensor` of shape [batch_size, patch_height, patch_width, 3] representing a batch of images. """ filename_queue = tf.train.string_input_producer( tf.train.match_filenames_once(file_pattern), shuffle=shuffle, capacity=5 * batch_size) _, image_bytes = tf.WholeFileReader().read(filename_queue) return batch_images( image=normalize_image(tf.image.decode_image(image_bytes)), patch_height=patch_height, patch_width=patch_width, colors=colors, batch_size=batch_size, shuffle=shuffle, num_threads=num_threads)
Example #25
Source File: data_utils.py From DeepLearningImplementations with MIT License | 5 votes |
def input_data_mnist(sess): FLAGS = tf.app.flags.FLAGS list_images = glob.glob("/home/tmain/Desktop/DeepLearning/Data/mnist/*.jpg") # Read each JPEG file with tf.device('/cpu:0'): reader = tf.WholeFileReader() filename_queue = tf.train.string_input_producer(list_images) key, value = reader.read(filename_queue) channels = FLAGS.channels image = tf.image.decode_jpeg(value, channels=channels, name="dataset_image") image.set_shape([28, 28, 1]) # Crop and other random augmentations # image = tf.image.random_flip_left_right(image) # image = tf.image.random_saturation(image, .95, 1.05) # image = tf.image.random_brightness(image, .05) # image = tf.image.random_contrast(image, .95, 1.05) # Normalize image = normalize_image(image) # Format image to correct ordering if FLAGS.data_format == "NCHW": image = tf.transpose(image, (2,0,1)) # Using asynchronous queues img_batch = tf.train.batch([image], batch_size=FLAGS.batch_size, num_threads=FLAGS.num_threads, capacity=2 * FLAGS.num_threads * FLAGS.batch_size, name='X_real_input') return img_batch
Example #26
Source File: playground.py From ImageFlow with Apache License 2.0 | 5 votes |
def _read_jpg(): dumm = glob.glob('/Users/HANEL/Desktop/' + '*.png') print(len(dumm)) filename_queue = tf.train.string_input_producer(dumm) # filename_queue = tf.train.string_input_producer(['/Users/HANEL/Desktop/tf.png', '/Users/HANEL/Desktop/ft.png']) reader = tf.WholeFileReader() key, value = reader.read(filename_queue) my_img = tf.image.decode_png(value) # my_img_flip = tf.image.flip_up_down(my_img) init_op = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init_op) # Start populating the filename queue. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for i in range(1): gunel = my_img.eval() print(gunel.shape) Image._showxv(Image.fromarray(np.asarray(gunel))) coord.request_stop() coord.join(threads) # # _read_jpg()
Example #27
Source File: swivel.py From hands-detection with MIT License | 5 votes |
def _count_matrix_input(self, filenames, submatrix_rows, submatrix_cols): """Creates ops that read submatrix shards from disk.""" random.shuffle(filenames) filename_queue = tf.train.string_input_producer(filenames) reader = tf.WholeFileReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64), 'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64), 'sparse_local_row': tf.VarLenFeature(dtype=tf.int64), 'sparse_local_col': tf.VarLenFeature(dtype=tf.int64), 'sparse_value': tf.VarLenFeature(dtype=tf.float32) }) global_row = features['global_row'] global_col = features['global_col'] sparse_local_row = features['sparse_local_row'].values sparse_local_col = features['sparse_local_col'].values sparse_count = features['sparse_value'].values sparse_indices = tf.concat( axis=1, values=[tf.expand_dims(sparse_local_row, 1), tf.expand_dims(sparse_local_col, 1)]) count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols], sparse_count) return global_row, global_col, count
Example #28
Source File: swivel.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def count_matrix_input(filenames, submatrix_rows, submatrix_cols): """Reads submatrix shards from disk.""" filename_queue = tf.train.string_input_producer(filenames) reader = tf.WholeFileReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64), 'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64), 'sparse_local_row': tf.VarLenFeature(dtype=tf.int64), 'sparse_local_col': tf.VarLenFeature(dtype=tf.int64), 'sparse_value': tf.VarLenFeature(dtype=tf.float32) }) global_row = features['global_row'] global_col = features['global_col'] sparse_local_row = features['sparse_local_row'].values sparse_local_col = features['sparse_local_col'].values sparse_count = features['sparse_value'].values sparse_indices = tf.concat(1, [tf.expand_dims(sparse_local_row, 1), tf.expand_dims(sparse_local_col, 1)]) count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols], sparse_count) queued_global_row, queued_global_col, queued_count = tf.train.batch( [global_row, global_col, count], batch_size=1, num_threads=4, capacity=32) queued_global_row = tf.reshape(queued_global_row, [submatrix_rows]) queued_global_col = tf.reshape(queued_global_col, [submatrix_cols]) queued_count = tf.reshape(queued_count, [submatrix_rows, submatrix_cols]) return queued_global_row, queued_global_col, queued_count
Example #29
Source File: input.py From DF-Net with MIT License | 5 votes |
def read_png_image(filenames, num_epochs=None): """Given a list of filenames, constructs a reader op for images.""" filename_queue = tf.train.string_input_producer(filenames, shuffle=False, capacity=len(filenames)) reader = tf.WholeFileReader() _, value = reader.read(filename_queue) image_uint8 = tf.image.decode_png(value, channels=3) image = tf.cast(image_uint8, tf.float32) return image
Example #30
Source File: image_data_loader.py From style_swap_tensorflow with Apache License 2.0 | 5 votes |
def get_data(self): data_files = get_data_files(self.config.Image_files) # print("data files", data_files) filename_queue = tf.train.string_input_producer( data_files, num_epochs=self.config.num_epochs, shuffle=self.shuffle, name='filenames') reader = tf.WholeFileReader() _, value = reader.read(filename_queue) image = tf.image.decode_image(value) return image