Python tensorflow.VarLenFeature() Examples

The following are 30 code examples of tensorflow.VarLenFeature(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow , or try the search function .
Example #1
Source File: readers.py    From youtube-8m with Apache License 2.0 6 votes vote down vote up
def prepare_reader(self, filename_queue, batch_size=1024):

    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]]) 
Example #2
Source File: dataset_test.py    From spotify-tensorflow with Apache License 2.0 6 votes vote down vote up
def _write_test_data():
        schema = feature_spec_to_schema({"f0": tf.VarLenFeature(dtype=tf.int64),
                                         "f1": tf.VarLenFeature(dtype=tf.int64),
                                         "f2": tf.VarLenFeature(dtype=tf.int64)})
        batches = [
            [1, 4, None],
            [2, None, None],
            [3, 5, None],
            [None, None, None],
        ]

        example_proto = [example_pb2.Example(features=feature_pb2.Features(feature={
            "f" + str(i): feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=[f]))
            for i, f in enumerate(batch) if f is not None
        })) for batch in batches]

        return DataUtil.write_test_data(example_proto, schema) 
Example #3
Source File: movielens.py    From cloudml-samples with Apache License 2.0 6 votes vote down vote up
def _make_schema(columns, types, default_values):
  """Input schema definition.

  Args:
    columns: column names for fields appearing in input.
    types: column types for fields appearing in input.
    default_values: default values for fields appearing in input.
  Returns:
    feature_set dictionary of string to *Feature.
  """
  result = {}
  assert len(columns) == len(types)
  assert len(columns) == len(default_values)
  for c, t, v in zip(columns, types, default_values):
    if isinstance(t, list):
      result[c] = tf.VarLenFeature(dtype=t[0])
    else:
      result[c] = tf.FixedLenFeature(shape=[], dtype=t, default_value=v)
  return dataset_schema.from_feature_spec(result) 
Example #4
Source File: word2vec.py    From tensorflow_nlp with Apache License 2.0 6 votes vote down vote up
def load_tfrecord(self):
        opts = self._options
        file_names = glob(opts.train_dir + '/output.tfrecord')
        file_queue = tf.train.string_input_producer(file_names,
                                                    num_epochs=opts.epochs_to_train)
        reader = tf.TFRecordReader()
        _, record_string = reader.read(file_queue)
        features = {'sentence': tf.VarLenFeature(tf.int64)}
        one_line_example = tf.parse_single_example(record_string, features=features)
        capacity = PRELOAD_LINES
        batch_lines = tf.train.batch(one_line_example,
                                     batch_size=BATCH_LINES,
                                     capacity=capacity,
                                     num_threads=opts.io_threads)
        corpus_slice = batch_lines['sentence'].values
        return corpus_slice 
Example #5
Source File: read_tfrecord.py    From 2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement with MIT License 6 votes vote down vote up
def _extract_features_batch(self, serialized_batch):
        features = tf.parse_example(
            serialized_batch,
            features={'images': tf.FixedLenFeature([], tf.string),
                'imagepaths': tf.FixedLenFeature([], tf.string),
                'labels': tf.VarLenFeature(tf.int64),
                 })

        bs = features['images'].shape[0]
        images = tf.decode_raw(features['images'], tf.uint8)
        w, h = tuple(CFG.ARCH.INPUT_SIZE)
        images = tf.cast(x=images, dtype=tf.float32)
        #images = tf.subtract(tf.divide(images, 128.0), 1.0)
        images = tf.reshape(images, [bs, h, -1, CFG.ARCH.INPUT_CHANNELS])

        labels = features['labels']
        labels = tf.cast(labels, tf.int32)

        imagepaths = features['imagepaths']

        return images, labels, imagepaths 
Example #6
Source File: readtf.py    From udacity-driving-reader with Apache License 2.0 6 votes vote down vote up
def example_parser(example_serialized):
    
    feature_map = {
        'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value=''),
        'image/timestamp': tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
        'steer/angle': tf.FixedLenFeature([2], dtype=tf.float32, default_value=[0.0, 0.0]),
        'steer/timestamp': tf.FixedLenFeature([2], dtype=tf.int64, default_value=[-1, -1]),
        #'gps/lat': tf.FixedLenFeature([2], dtype=tf.float32, default_value=[0.0, 0.00]),
        #'gps/long': tf.FixedLenFeature([2], dtype=tf.float32, default_value=[0.0, 0.0]),
        #'gps/timestamp': tf.VarLenFeature(tf.int64),
    }

    features = tf.parse_single_example(example_serialized, feature_map)

    image_timestamp = tf.cast(features['image/timestamp'], dtype=tf.int64)
    steering_angles = features['steer/angle']
    steering_timestamps = features['steer/timestamp']

    return features['image/encoded'], image_timestamp, steering_angles, steering_timestamps 
Example #7
Source File: readers.py    From Youtube-8M-WILLOW with Apache License 2.0 6 votes vote down vote up
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)

    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]]) 
Example #8
Source File: ilsvrc12_dataset.py    From tf-hrnet with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def parse_example_proto(example_serialized):
  """Parse image buffer, label, and bounding box from the serialized data.

  Args:
  * example_serialized: serialized example data

  Returns:
  * image_buffer: image buffer label
  * label: label tensor (not one-hot)
  * bbox: bounding box tensor
  """

  # parse features from the serialized data
  feature_map = {
    'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value=''),
    'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64, default_value=-1),
    'image/class/text': tf.FixedLenFeature([], dtype=tf.string, default_value=''),
  }
  bbox_keys = ['image/object/bbox/' + x for x in ['xmin', 'ymin', 'xmax', 'ymax']]
  feature_map.update({key: tf.VarLenFeature(dtype=tf.float32) for key in bbox_keys})
  features = tf.parse_single_example(example_serialized, feature_map)

  # obtain the label and bounding boxes
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat(axis=0, values=[ymin, xmin, ymax, xmax])
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox 
Example #9
Source File: generator_utils.py    From BERT with Apache License 2.0 5 votes vote down vote up
def tfrecord_iterator(filenames, gzipped=False, example_spec=None):
  """Yields records from TFRecord files.

  Args:
    filenames: list<str>, list of TFRecord filenames to read from.
    gzipped: bool, whether the TFRecord files are gzip-encoded.
    example_spec: dict<str feature name, tf.VarLenFeature/tf.FixedLenFeature>,
      if provided, will parse each record as a tensorflow.Example proto.

  Yields:
    Records (or parsed Examples, if example_spec is provided) from files.
  """
  with tf.Graph().as_default():
    dataset = tf.data.Dataset.from_tensor_slices(filenames)

    def _load_records(filename):
      return tf.data.TFRecordDataset(
          filename,
          compression_type=tf.constant("GZIP") if gzipped else None,
          buffer_size=16 * 1000 * 1000)

    dataset = dataset.flat_map(_load_records)

    def _parse_example(ex_ser):
      return tf.parse_single_example(ex_ser, example_spec)

    if example_spec:
      dataset = dataset.map(_parse_example, num_parallel_calls=32)
    dataset = dataset.prefetch(100)
    record_it = dataset.make_one_shot_iterator().get_next()

    with tf.Session() as sess:
      while True:
        try:
          ex = sess.run(record_it)
          yield ex
        except tf.errors.OutOfRangeError:
          break 
Example #10
Source File: imagenet_main.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def record_parser(value, is_training):
  """Parse an ImageNet record from `value`."""
  keys_to_features = {
      'image/encoded':
          tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format':
          tf.FixedLenFeature((), tf.string, default_value='jpeg'),
      'image/class/label':
          tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
      'image/class/text':
          tf.FixedLenFeature([], dtype=tf.string, default_value=''),
      'image/object/bbox/xmin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/xmax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/class/label':
          tf.VarLenFeature(dtype=tf.int64),
  }

  parsed = tf.parse_single_example(value, keys_to_features)

  image = tf.image.decode_image(
      tf.reshape(parsed['image/encoded'], shape=[]),
      _NUM_CHANNELS)
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)

  image = vgg_preprocessing.preprocess_image(
      image=image,
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
      is_training=is_training)

  label = tf.cast(
      tf.reshape(parsed['image/class/label'], shape=[]),
      dtype=tf.int32)

  return image, tf.one_hot(label, _LABEL_CLASSES) 
Example #11
Source File: TrainLSP.py    From deeppose with GNU General Public License v3.0 5 votes vote down vote up
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()

    _, serialized_example = reader.read(filename_queue)
    # The serialized example is converted back to actual values.
    # One needs to describe the format of the objects to be returned
    features = tf.parse_single_example(
        serialized_example,
        features={
            # We know the length of both fields. If not the
            # tf.VarLenFeature could be used
            'label': tf.FixedLenFeature([LSPGlobals.TotalLabels], tf.int64),
            'image_raw': tf.FixedLenFeature([], tf.string)
        })

    # now return the converted data
    image_as_vector = tf.decode_raw(features['image_raw'], tf.uint8)
    image_as_vector.set_shape([LSPGlobals.TotalImageBytes])
    image = tf.reshape(image_as_vector, [FLAGS.input_size, FLAGS.input_size, FLAGS.input_depth])
    # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image_float = tf.cast(image, tf.float32) * (1. / 255) - 0.5

    # Convert label from a scalar uint8 tensor to an int32 scalar.
    label = tf.cast(features['label'], tf.int32)

    return label, image_float 
Example #12
Source File: text_problems.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields, data_items_to_decoders = (super(QuestionAndContext2TextProblem,
                                                 self)
                                           .example_reading_spec())
    data_fields["context"] = tf.VarLenFeature(tf.int64)
    return (data_fields, data_items_to_decoders) 
Example #13
Source File: input_ops.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def parse_example_batch(serialized):
  """Parses a batch of tf.Example protos.

  Args:
    serialized: A 1-D string Tensor; a batch of serialized tf.Example protos.
  Returns:
    encode: A SentenceBatch of encode sentences.
    decode_pre: A SentenceBatch of "previous" sentences to decode.
    decode_post: A SentenceBatch of "post" sentences to decode.
  """
  features = tf.parse_example(
      serialized,
      features={
          "encode": tf.VarLenFeature(dtype=tf.int64),
          "decode_pre": tf.VarLenFeature(dtype=tf.int64),
          "decode_post": tf.VarLenFeature(dtype=tf.int64),
      })

  def _sparse_to_batch(sparse):
    ids = tf.sparse_tensor_to_dense(sparse)  # Padding with zeroes.
    mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape,
                              tf.ones_like(sparse.values, dtype=tf.int32))
    return SentenceBatch(ids=ids, mask=mask)

  output_names = ("encode", "decode_pre", "decode_post")
  return tuple(_sparse_to_batch(features[x]) for x in output_names) 
Example #14
Source File: swivel.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def _count_matrix_input(self, filenames, submatrix_rows, submatrix_cols):
    """Creates ops that read submatrix shards from disk."""
    random.shuffle(filenames)
    filename_queue = tf.train.string_input_producer(filenames)
    reader = tf.WholeFileReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
            'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64),
            'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64),
            'sparse_local_row': tf.VarLenFeature(dtype=tf.int64),
            'sparse_local_col': tf.VarLenFeature(dtype=tf.int64),
            'sparse_value': tf.VarLenFeature(dtype=tf.float32)
        })

    global_row = features['global_row']
    global_col = features['global_col']

    sparse_local_row = features['sparse_local_row'].values
    sparse_local_col = features['sparse_local_col'].values
    sparse_count = features['sparse_value'].values

    sparse_indices = tf.concat(
        axis=1, values=[tf.expand_dims(sparse_local_row, 1),
                        tf.expand_dims(sparse_local_col, 1)])

    count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols],
                               sparse_count)

    return global_row, global_col, count 
Example #15
Source File: data_reader_test.py    From training_results_v0.5 with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "targets": tf.VarLenFeature(tf.int64),
        "floats": tf.VarLenFeature(tf.float32),
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
Example #16
Source File: fsns.py    From training_results_v0.5 with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    label_key = "image/unpadded_label"
    data_fields, data_items_to_decoders = (
        super(ImageFSNS, self).example_reading_spec())
    data_fields[label_key] = tf.VarLenFeature(tf.int64)
    data_items_to_decoders[
        "targets"] = tf.contrib.slim.tfexample_decoder.Tensor(label_key)
    return data_fields, data_items_to_decoders 
Example #17
Source File: data.py    From dket with GNU General Public License v3.0 5 votes vote down vote up
def parse(serialized):
    """Parse a serialized string into tensors.

    Arguments:
      example: a serialized `tf.train.SequenceExample` (like the one returned
        from the `encode()` method).

    Returns:
      a tuple of 4 tensors:
        `words`: 1D tensor of shape [sentence_length].
        `sentence_length`: 0D tesnor (i.e. scalar) representing the sentence length.
        `formula`: 1D tensor of shape [formula_length].
        `formula_length`: a 0D tensor (i.e. scalar) representing the formula length
    """
    features = {
        SENTENCE_LENGTH_KEY: tf.FixedLenFeature([], tf.int64),
        FORMULA_LENGTH_KEY: tf.FixedLenFeature([], tf.int64),
        WORDS_KEY: tf.VarLenFeature(tf.int64),
        FORMULA_KEY: tf.VarLenFeature(tf.int64),
    }
    parsed = tf.parse_single_example(
        serialized=serialized,
        features=features)
    sentence_length = parsed[SENTENCE_LENGTH_KEY]
    formula_length = parsed[FORMULA_LENGTH_KEY]
    words = tf.sparse_tensor_to_dense(parsed[WORDS_KEY])
    formula = tf.sparse_tensor_to_dense(parsed[FORMULA_KEY])
    return words, sentence_length, formula, formula_length 
Example #18
Source File: imagenet_input.py    From training_results_v0.5 with Apache License 2.0 5 votes vote down vote up
def dataset_parser(self, value):
    """Parses an image and its label from a serialized ResNet-50 TFExample.

    Args:
      value: serialized string containing an ImageNet TFExample.

    Returns:
      Returns a tuple of (image, label) from the TFExample.
    """
    keys_to_features = {
        'image/encoded': tf.FixedLenFeature((), tf.string, ''),
        'image/format': tf.FixedLenFeature((), tf.string, 'jpeg'),
        'image/class/label': tf.FixedLenFeature([], tf.int64, -1),
        'image/class/text': tf.FixedLenFeature([], tf.string, ''),
        'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
        'image/object/class/label': tf.VarLenFeature(dtype=tf.int64),
    }

    parsed = tf.parse_single_example(value, keys_to_features)
    image_bytes = tf.reshape(parsed['image/encoded'], shape=[])

    image = self.image_preprocessing_fn(
        image_bytes=image_bytes,
        is_training=self.is_training,
        image_size=self.image_size,
        use_bfloat16=self.use_bfloat16)

    # Subtract one so that labels are in [0, 1000).
    label = tf.cast(
        tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) - 1

    return image, label 
Example #19
Source File: gene_expression.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "targets": tf.VarLenFeature(tf.float32),
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
Example #20
Source File: text_problems.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "targets": tf.FixedLenFeature([1], tf.int64),
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
Example #21
Source File: hico.py    From CVTron with Apache License 2.0 5 votes vote down vote up
def get_split(split_name, dataset_dir, file_pattern=None, reader=None):
    if split_name not in _SPLITS_TO_SIZES:
        raise ValueError('split name %s was not recognized.' % split_name)

    if not file_pattern:
        file_pattern = _FILE_PATTERN
    file_pattern = os.path.join(dataset_dir, file_pattern % split_name)

    # Allowing None in the signature so that dataset_factory can use the default.
    if reader is None:
        reader = tf.TFRecordReader

    # Features in HICO TFRecords
    keys_to_features = {
        'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
        'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
        'image/class/label': tf.FixedLenFeature([], tf.string),
        #'image/class/object': tf.VarLenFeature(dtype=tf.string),
        #'image/class/verb': tf.VarLenFeature(dtype=tf.string),
    }

    items_to_handlers = {
        'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'),
        'label': slim.tfexample_decoder.Tensor('image/class/label'),
        #'object': slim.tfexample_decoder.Tensor('image/class/object'),
        #'verb': slim.tfexample_decoder.Tensor('image/class/verb'),
    }

    decoder = slim.tfexample_decoder.TFExampleDecoder(
        keys_to_features, items_to_handlers)

    labels_to_names = read_label_file(_LABELS_FILENAME)

    return slim.dataset.Dataset(
            data_sources=file_pattern,
            reader=reader,
            decoder=decoder,
            num_samples=_SPLITS_TO_SIZES[split_name],
            items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
            num_classes=_NUM_CLASSES,
            labels_to_names=labels_to_names) 
Example #22
Source File: speech_recognition.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "waveforms": tf.VarLenFeature(tf.float32),
        "targets": tf.VarLenFeature(tf.int64),
    }

    data_items_to_decoders = None

    return data_fields, data_items_to_decoders 
Example #23
Source File: problem.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    """Define how data is serialized to file and read back.

    Returns:
      data_fields: A dictionary mapping data names to its feature type.
      data_items_to_decoders: A dictionary mapping data names to TF Example
         decoders, to be used when reading back TF examples from disk.
    """
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "targets": tf.VarLenFeature(tf.int64)
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
Example #24
Source File: image_utils.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    label_key = "image/class/label"
    data_fields, data_items_to_decoders = (
        super(Image2TextProblem, self).example_reading_spec())
    data_fields[label_key] = tf.VarLenFeature(tf.int64)
    data_items_to_decoders[
        "targets"] = tf.contrib.slim.tfexample_decoder.Tensor(label_key)
    return data_fields, data_items_to_decoders 
Example #25
Source File: timeseries.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.float32),
        "targets": tf.VarLenFeature(tf.float32),
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
Example #26
Source File: problem_hparams.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "audio/sample_count": tf.FixedLenFeature((), tf.int64),
        "audio/sample_width": tf.FixedLenFeature((), tf.int64),
        "targets": tf.VarLenFeature(tf.int64),
    }
    return data_fields, None 
Example #27
Source File: wikisum.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "targets": tf.VarLenFeature(tf.int64),
        "section_boundaries": tf.VarLenFeature(tf.int64),
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
Example #28
Source File: translate.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {"dist_targets": tf.VarLenFeature(tf.int64)}

    if self.has_inputs:
      data_fields["inputs"] = tf.VarLenFeature(tf.int64)

    # hack: ignoring true targets and putting dist_targets in targets
    data_items_to_decoders = {
        "inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"),
        "targets": tf.contrib.slim.tfexample_decoder.Tensor("dist_targets"),
    }

    return (data_fields, data_items_to_decoders) 
Example #29
Source File: fsns.py    From BERT with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    label_key = "image/unpadded_label"
    data_fields, data_items_to_decoders = (
        super(ImageFSNS, self).example_reading_spec())
    data_fields[label_key] = tf.VarLenFeature(tf.int64)
    data_items_to_decoders[
        "targets"] = tf.contrib.slim.tfexample_decoder.Tensor(label_key)
    return data_fields, data_items_to_decoders 
Example #30
Source File: input_ops.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def parse_example_batch(serialized):
  """Parses a batch of tf.Example protos.

  Args:
    serialized: A 1-D string Tensor; a batch of serialized tf.Example protos.
  Returns:
    encode: A SentenceBatch of encode sentences.
    decode_pre: A SentenceBatch of "previous" sentences to decode.
    decode_post: A SentenceBatch of "post" sentences to decode.
  """
  features = tf.parse_example(
      serialized,
      features={
          "encode": tf.VarLenFeature(dtype=tf.int64),
          "decode_pre": tf.VarLenFeature(dtype=tf.int64),
          "decode_post": tf.VarLenFeature(dtype=tf.int64),
      })

  def _sparse_to_batch(sparse):
    ids = tf.sparse_tensor_to_dense(sparse)  # Padding with zeroes.
    mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape,
                              tf.ones_like(sparse.values, dtype=tf.int32))
    return SentenceBatch(ids=ids, mask=mask)

  output_names = ("encode", "decode_pre", "decode_post")
  return tuple(_sparse_to_batch(features[x]) for x in output_names)