Python tensorflow.parse_single_sequence_example() Examples
The following are 30
code examples of tensorflow.parse_single_sequence_example().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: input_pipeline.py From realtime-embeddings-matching with Apache License 2.0 | 6 votes |
def parse_fn(serialized_example): """Parse a serialized example.""" # user_id is not currently used. context_features = { 'user_id': tf.FixedLenFeature([], dtype=tf.int64) } sequence_features = { 'movie_ids': tf.FixedLenSequenceFeature([], dtype=tf.int64) } parsed_feature, parsed_sequence_feature = tf.parse_single_sequence_example( serialized=serialized_example, context_features=context_features, sequence_features=sequence_features ) movie_ids = parsed_sequence_feature['movie_ids'] return movie_ids
Example #2
Source File: data_providers.py From yolo_v2 with Apache License 2.0 | 6 votes |
def parse_sequence_example(serialized_example, num_views): """Parses a serialized sequence example into views, sequence length data.""" context_features = { 'task': tf.FixedLenFeature(shape=[], dtype=tf.string), 'len': tf.FixedLenFeature(shape=[], dtype=tf.int64) } view_names = ['view%d' % i for i in range(num_views)] fixed_features = [ tf.FixedLenSequenceFeature( shape=[], dtype=tf.string) for _ in range(len(view_names))] sequence_features = dict(zip(view_names, fixed_features)) context_parse, sequence_parse = tf.parse_single_sequence_example( serialized=serialized_example, context_features=context_features, sequence_features=sequence_features) views = tf.stack([sequence_parse[v] for v in view_names]) lens = [sequence_parse[v].get_shape().as_list()[0] for v in view_names] assert len(set(lens)) == 1 seq_len = tf.shape(sequence_parse[v])[0] return context_parse, views, seq_len
Example #3
Source File: inputs.py From yolo_v2 with Apache License 2.0 | 6 votes |
def _read_single_sequence_example(file_list, tokens_shape=None): """Reads and parses SequenceExamples from TFRecord-encoded file_list.""" tf.logging.info('Constructing TFRecordReader from files: %s', file_list) file_queue = tf.train.string_input_producer(file_list) reader = tf.TFRecordReader() seq_key, serialized_record = reader.read(file_queue) ctx, sequence = tf.parse_single_sequence_example( serialized_record, sequence_features={ data_utils.SequenceWrapper.F_TOKEN_ID: tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64), data_utils.SequenceWrapper.F_LABEL: tf.FixedLenSequenceFeature([], dtype=tf.int64), data_utils.SequenceWrapper.F_WEIGHT: tf.FixedLenSequenceFeature([], dtype=tf.float32), }) return seq_key, ctx, sequence
Example #4
Source File: sequence_handler.py From cutkum with MIT License | 6 votes |
def read_and_decode_single_example(filenames, shuffle=False, num_epochs=None): # first construct a queue containing a list of filenames. # this lets a user split up there dataset in multiple files to keep size down #filename_queue = tf.train.string_input_producer([filename], num_epochs=10) filename_queue = tf.train.string_input_producer(filenames, shuffle=shuffle, num_epochs=num_epochs) reader = tf.TFRecordReader() # One can read a single serialized example from a filename # serialized_example is a Tensor of type string. key, serialized_ex = reader.read(filename_queue) context, sequences = tf.parse_single_sequence_example(serialized_ex, context_features = { "length": tf.FixedLenFeature([], dtype=tf.int64) }, sequence_features={ # We know the length of both fields. If not the # tf.VarLenFeature could be used "source": tf.FixedLenSequenceFeature([], dtype=tf.int64), "target": tf.FixedLenSequenceFeature([], dtype=tf.int64) }) return (key, context, sequences)
Example #5
Source File: read_inference.py From deep_learning with MIT License | 6 votes |
def single_example_parser(serialized_example): context_features = { "uid": tf.FixedLenFeature([], dtype=tf.int64), "sl": tf.FixedLenFeature([], dtype=tf.int64), "last": tf.FixedLenFeature([], dtype=tf.int64) } sequence_features = { "hist": tf.FixedLenSequenceFeature([], dtype=tf.int64), } context_parsed, sequence_parsed = tf.parse_single_sequence_example( serialized=serialized_example, context_features=context_features, sequence_features=sequence_features ) uid = context_parsed['uid'] sl = context_parsed['sl'] last = context_parsed['last'] sequences = sequence_parsed['hist'] return sequences, uid,sl,last
Example #6
Source File: input_pipeline.py From DeepChatModels with MIT License | 6 votes |
def _assign_queue(self, proto_text): """ Args: proto_text: object to be enqueued and managed by parallel threads. """ with tf.variable_scope('shuffle_queue'): queue = tf.RandomShuffleQueue( capacity=self.capacity, min_after_dequeue=10*self.batch_size, dtypes=tf.string, shapes=[()]) enqueue_op = queue.enqueue(proto_text) example_dq = queue.dequeue() qr = tf.train.QueueRunner(queue, [enqueue_op] * 4) tf.train.add_queue_runner(qr) _sequence_lengths, _sequences = tf.parse_single_sequence_example( serialized=example_dq, context_features=LENGTHS, sequence_features=SEQUENCES) return _sequence_lengths, _sequences
Example #7
Source File: inputs.py From object_detection_with_tensorflow with MIT License | 6 votes |
def _read_single_sequence_example(file_list, tokens_shape=None): """Reads and parses SequenceExamples from TFRecord-encoded file_list.""" tf.logging.info('Constructing TFRecordReader from files: %s', file_list) file_queue = tf.train.string_input_producer(file_list) reader = tf.TFRecordReader() seq_key, serialized_record = reader.read(file_queue) ctx, sequence = tf.parse_single_sequence_example( serialized_record, sequence_features={ data_utils.SequenceWrapper.F_TOKEN_ID: tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64), data_utils.SequenceWrapper.F_LABEL: tf.FixedLenSequenceFeature([], dtype=tf.int64), data_utils.SequenceWrapper.F_WEIGHT: tf.FixedLenSequenceFeature([], dtype=tf.float32), }) return seq_key, ctx, sequence
Example #8
Source File: model.py From thai-word-segmentation with MIT License | 6 votes |
def _parse_record(example_proto): context_features = { "length": tf.FixedLenFeature([], dtype=tf.int64) } sequence_features = { "tokens": tf.FixedLenSequenceFeature([], dtype=tf.int64), "labels": tf.FixedLenSequenceFeature([], dtype=tf.int64) } context_parsed, sequence_parsed = tf.parse_single_sequence_example(serialized=example_proto, context_features=context_features, sequence_features=sequence_features) return context_parsed['length'], sequence_parsed['tokens'], sequence_parsed['labels'] # Read training data from TFRecord file, shuffle, loop over data infinitely and # pad to the longest sentence
Example #9
Source File: data_providers.py From object_detection_with_tensorflow with MIT License | 6 votes |
def parse_sequence_example(serialized_example, num_views): """Parses a serialized sequence example into views, sequence length data.""" context_features = { 'task': tf.FixedLenFeature(shape=[], dtype=tf.string), 'len': tf.FixedLenFeature(shape=[], dtype=tf.int64) } view_names = ['view%d' % i for i in range(num_views)] fixed_features = [ tf.FixedLenSequenceFeature( shape=[], dtype=tf.string) for _ in range(len(view_names))] sequence_features = dict(zip(view_names, fixed_features)) context_parse, sequence_parse = tf.parse_single_sequence_example( serialized=serialized_example, context_features=context_features, sequence_features=sequence_features) views = tf.stack([sequence_parse[v] for v in view_names]) lens = [sequence_parse[v].get_shape().as_list()[0] for v in view_names] assert len(set(lens)) == 1 seq_len = tf.shape(sequence_parse[v])[0] return context_parse, views, seq_len
Example #10
Source File: serialize_fasta.py From tape-neurips2019 with MIT License | 6 votes |
def deserialize_fasta_sequence(example): context = { 'protein_length': tf.FixedLenFeature([1], tf.int64), 'id': tf.FixedLenFeature([], tf.string) } features = { 'primary': tf.FixedLenSequenceFeature([1], tf.int64), } context, features = tf.parse_single_sequence_example( example, context_features=context, sequence_features=features ) return {'id': context['id'], 'primary': tf.to_int32(features['primary'][:, 0]), 'protein_length': tf.to_int32(context['protein_length'][0])}
Example #11
Source File: input_pipeline.py From unsupervised_captioning with MIT License | 6 votes |
def parse_sentence(serialized): """Parses a tensorflow.SequenceExample into an caption. Args: serialized: A scalar string Tensor; a single serialized SequenceExample. Returns: key: The keywords in a sentence. num_key: The number of keywords. sentence: A description. sentence_length: The length of the description. """ context, sequence = tf.parse_single_sequence_example( serialized, context_features={}, sequence_features={ 'sentence': tf.FixedLenSequenceFeature([], dtype=tf.int64), }) sentence = tf.to_int32(sequence['sentence']) key = controlled_shuffle(sentence[1:-1]) key = random_drop(key) key = tf.concat([key, [FLAGS.end_id]], axis=0) return key, tf.shape(key)[0], sentence, tf.shape(sentence)[0]
Example #12
Source File: input_pipeline.py From unsupervised_captioning with MIT License | 6 votes |
def parse_image(serialized): """Parses a tensorflow.SequenceExample into an image and detected objects. Args: serialized: A scalar string Tensor; a single serialized SequenceExample. Returns: encoded_image: A scalar string Tensor containing a JPEG encoded image. classes: A 1-D int64 Tensor containing the detected objects. scores: A 1-D float32 Tensor containing the detection scores. """ context, sequence = tf.parse_single_sequence_example( serialized, context_features={ 'image/data': tf.FixedLenFeature([], dtype=tf.string) }, sequence_features={ 'classes': tf.FixedLenSequenceFeature([], dtype=tf.int64), 'scores': tf.FixedLenSequenceFeature([], dtype=tf.float32), }) encoded_image = context['image/data'] classes = tf.to_int32(sequence['classes']) scores = sequence['scores'] return encoded_image, classes, scores
Example #13
Source File: data_providers.py From Gun-Detector with Apache License 2.0 | 6 votes |
def parse_sequence_example(serialized_example, num_views): """Parses a serialized sequence example into views, sequence length data.""" context_features = { 'task': tf.FixedLenFeature(shape=[], dtype=tf.string), 'len': tf.FixedLenFeature(shape=[], dtype=tf.int64) } view_names = ['view%d' % i for i in range(num_views)] fixed_features = [ tf.FixedLenSequenceFeature( shape=[], dtype=tf.string) for _ in range(len(view_names))] sequence_features = dict(zip(view_names, fixed_features)) context_parse, sequence_parse = tf.parse_single_sequence_example( serialized=serialized_example, context_features=context_features, sequence_features=sequence_features) views = tf.stack([sequence_parse[v] for v in view_names]) lens = [sequence_parse[v].get_shape().as_list()[0] for v in view_names] assert len(set(lens)) == 1 seq_len = tf.shape(sequence_parse[view_names[-1]])[0] return context_parse, views, seq_len
Example #14
Source File: inputs.py From DOTA_models with Apache License 2.0 | 6 votes |
def _read_single_sequence_example(file_list, tokens_shape=None): """Reads and parses SequenceExamples from TFRecord-encoded file_list.""" tf.logging.info('Constructing TFRecordReader from files: %s', file_list) file_queue = tf.train.string_input_producer(file_list) reader = tf.TFRecordReader() seq_key, serialized_record = reader.read(file_queue) ctx, sequence = tf.parse_single_sequence_example( serialized_record, sequence_features={ data_utils.SequenceWrapper.F_TOKEN_ID: tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64), data_utils.SequenceWrapper.F_LABEL: tf.FixedLenSequenceFeature([], dtype=tf.int64), data_utils.SequenceWrapper.F_WEIGHT: tf.FixedLenSequenceFeature([], dtype=tf.float32), }) return seq_key, ctx, sequence
Example #15
Source File: batch_inputs.py From sample-cnn with MIT License | 6 votes |
def _read_sequence_example(filename_queue, n_labels=50, n_samples=59049, n_segments=10): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) context, sequence = tf.parse_single_sequence_example( serialized_example, context_features={ 'raw_labels': tf.FixedLenFeature([], dtype=tf.string) }, sequence_features={ 'raw_segments': tf.FixedLenSequenceFeature([], dtype=tf.string) }) segments = tf.decode_raw(sequence['raw_segments'], tf.float32) segments.set_shape([n_segments, n_samples]) labels = tf.decode_raw(context['raw_labels'], tf.uint8) labels.set_shape([n_labels]) labels = tf.cast(labels, tf.float32) return segments, labels
Example #16
Source File: dataset_utils.py From listen-attend-and-spell with Apache License 2.0 | 6 votes |
def read_dataset(filename, num_channels=39): """Read data from tfrecord file.""" def parse_fn(example_proto): """Parse function for reading single sequence example.""" sequence_features = { 'inputs': tf.FixedLenSequenceFeature(shape=[num_channels], dtype=tf.float32), 'labels': tf.FixedLenSequenceFeature(shape=[], dtype=tf.string) } context, sequence = tf.parse_single_sequence_example( serialized=example_proto, sequence_features=sequence_features ) return sequence['inputs'], sequence['labels'] dataset = tf.data.TFRecordDataset(filename) dataset = dataset.map(parse_fn) return dataset
Example #17
Source File: data_utils.py From ID-CNN-CWS with GNU General Public License v3.0 | 6 votes |
def example_parser(self, filename_queue): reader = tf.TFRecordReader() key, record_string = reader.read(filename_queue) features = { 'labels': tf.FixedLenSequenceFeature([], tf.int64), 'tokens': tf.FixedLenSequenceFeature([], tf.int64), 'shapes': tf.FixedLenSequenceFeature([], tf.int64), 'chars': tf.FixedLenSequenceFeature([], tf.int64), 'seq_len': tf.FixedLenSequenceFeature([], tf.int64), 'tok_len': tf.FixedLenSequenceFeature([], tf.int64), } _, example = tf.parse_single_sequence_example(serialized=record_string, sequence_features=features) labels = example['labels'] tokens = example['tokens'] shapes = example['shapes'] chars = example['chars'] seq_len = example['seq_len'] tok_len = example['tok_len'] # context = c['context'] return labels, tokens, shapes, chars, seq_len, tok_len # return labels, tokens, labels, labels, labels
Example #18
Source File: inputs.py From hands-detection with MIT License | 6 votes |
def _read_single_sequence_example(file_list, tokens_shape=None): """Reads and parses SequenceExamples from TFRecord-encoded file_list.""" tf.logging.info('Constructing TFRecordReader from files: %s', file_list) file_queue = tf.train.string_input_producer(file_list) reader = tf.TFRecordReader() seq_key, serialized_record = reader.read(file_queue) ctx, sequence = tf.parse_single_sequence_example( serialized_record, sequence_features={ data_utils.SequenceWrapper.F_TOKEN_ID: tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64), data_utils.SequenceWrapper.F_LABEL: tf.FixedLenSequenceFeature([], dtype=tf.int64), data_utils.SequenceWrapper.F_WEIGHT: tf.FixedLenSequenceFeature([], dtype=tf.float32), }) return seq_key, ctx, sequence
Example #19
Source File: data_utils.py From bran with Apache License 2.0 | 6 votes |
def ner_example_parser(filename_queue): reader = tf.TFRecordReader() key, record_string = reader.read(filename_queue) # Define how to parse the example context_features = { 'seq_len': tf.FixedLenFeature([], tf.int64), } sequence_features = { "tokens": tf.FixedLenSequenceFeature([], dtype=tf.int64), "ner_labels": tf.FixedLenSequenceFeature([], dtype=tf.int64), "entities": tf.FixedLenSequenceFeature([], dtype=tf.int64), } context_parsed, sequence_parsed = tf.parse_single_sequence_example(serialized=record_string, context_features=context_features, sequence_features=sequence_features) tokens = sequence_parsed['tokens'] ner_labels = sequence_parsed['ner_labels'] entities = sequence_parsed['entities'] seq_len = context_parsed['seq_len'] return [tokens, ner_labels, entities, seq_len]
Example #20
Source File: inputs.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def _read_single_sequence_example(file_list, tokens_shape=None): """Reads and parses SequenceExamples from TFRecord-encoded file_list.""" tf.logging.info('Constructing TFRecordReader from files: %s', file_list) file_queue = tf.train.string_input_producer(file_list) reader = tf.TFRecordReader() seq_key, serialized_record = reader.read(file_queue) ctx, sequence = tf.parse_single_sequence_example( serialized_record, sequence_features={ data_utils.SequenceWrapper.F_TOKEN_ID: tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64), data_utils.SequenceWrapper.F_LABEL: tf.FixedLenSequenceFeature([], dtype=tf.int64), data_utils.SequenceWrapper.F_WEIGHT: tf.FixedLenSequenceFeature([], dtype=tf.float32), }) return seq_key, ctx, sequence
Example #21
Source File: obj2sen.py From unsupervised_captioning with MIT License | 6 votes |
def parse_sentence(serialized): """Parses a tensorflow.SequenceExample into an caption. Args: serialized: A scalar string Tensor; a single serialized SequenceExample. Returns: key: The keywords in a sentence. num_key: The number of keywords. sentence: A description. sentence_length: The length of the description. """ context, sequence = tf.parse_single_sequence_example( serialized, context_features={}, sequence_features={ 'key': tf.FixedLenSequenceFeature([], dtype=tf.int64), 'sentence': tf.FixedLenSequenceFeature([], dtype=tf.int64), }) key = tf.to_int32(sequence['key']) key = tf.random_shuffle(key) sentence = tf.to_int32(sequence['sentence']) return key, tf.shape(key)[0], sentence, tf.shape(sentence)[0]
Example #22
Source File: gen_obj2sen_caption.py From unsupervised_captioning with MIT License | 6 votes |
def parse_image(serialized, tf): """Parses a tensorflow.SequenceExample into an image and detected objects. Args: serialized: A scalar string Tensor; a single serialized SequenceExample. Returns: encoded_image: A scalar string Tensor containing a JPEG encoded image. classes: A 1-D int64 Tensor containing the detected objects. scores: A 1-D float32 Tensor containing the detection scores. """ context, sequence = tf.parse_single_sequence_example( serialized, sequence_features={ 'classes': tf.FixedLenSequenceFeature([], dtype=tf.int64), 'scores': tf.FixedLenSequenceFeature([], dtype=tf.float32), }) classes = tf.to_int32(sequence['classes']) scores = sequence['scores'] return classes, scores
Example #23
Source File: inputs.py From Gun-Detector with Apache License 2.0 | 6 votes |
def _read_single_sequence_example(file_list, tokens_shape=None): """Reads and parses SequenceExamples from TFRecord-encoded file_list.""" tf.logging.info('Constructing TFRecordReader from files: %s', file_list) file_queue = tf.train.string_input_producer(file_list) reader = tf.TFRecordReader() seq_key, serialized_record = reader.read(file_queue) ctx, sequence = tf.parse_single_sequence_example( serialized_record, sequence_features={ data_utils.SequenceWrapper.F_TOKEN_ID: tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64), data_utils.SequenceWrapper.F_LABEL: tf.FixedLenSequenceFeature([], dtype=tf.int64), data_utils.SequenceWrapper.F_WEIGHT: tf.FixedLenSequenceFeature([], dtype=tf.float32), }) return seq_key, ctx, sequence
Example #24
Source File: eval_obj2sen.py From unsupervised_captioning with MIT License | 6 votes |
def parse_image(serialized): """Parses a tensorflow.SequenceExample into an image and detected objects. Args: serialized: A scalar string Tensor; a single serialized SequenceExample. Returns: name: A scalar string Tensor containing the image name. classes: A 1-D int64 Tensor containing the detected objects. scores: A 1-D float32 Tensor containing the detection scores. """ context, sequence = tf.parse_single_sequence_example( serialized, context_features={ 'image/name': tf.FixedLenFeature([], dtype=tf.string) }, sequence_features={ 'classes': tf.FixedLenSequenceFeature([], dtype=tf.int64), 'scores': tf.FixedLenSequenceFeature([], dtype=tf.float32), }) name = context['image/name'] classes = tf.to_int32(sequence['classes']) scores = sequence['scores'] return name, classes, scores
Example #25
Source File: inputs.py From hands-detection with MIT License | 5 votes |
def parse_sequence_example(serialized, image_feature, caption_feature): """Parses a tensorflow.SequenceExample into an image and caption. Args: serialized: A scalar string Tensor; a single serialized SequenceExample. image_feature: Name of SequenceExample context feature containing image data. caption_feature: Name of SequenceExample feature list containing integer captions. Returns: encoded_image: A scalar string Tensor containing a JPEG encoded image. caption: A 1-D uint64 Tensor with dynamically specified length. """ context, sequence = tf.parse_single_sequence_example( serialized, context_features={ image_feature: tf.FixedLenFeature([], dtype=tf.string) }, sequence_features={ caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64), }) encoded_image = context[image_feature] caption = sequence[caption_feature] return encoded_image, caption
Example #26
Source File: read_tfrecords.py From deep_learning with MIT License | 5 votes |
def single_example_parser(serialized_example): context_features = { "uid": tf.FixedLenFeature([], dtype=tf.int64), "sl": tf.FixedLenFeature([], dtype=tf.int64), "last": tf.FixedLenFeature([], dtype=tf.int64) } sequence_features = { "hist": tf.FixedLenSequenceFeature([], dtype=tf.int64), "sub_sample": tf.FixedLenSequenceFeature([], dtype=tf.int64), "mask": tf.FixedLenSequenceFeature([], dtype=tf.int64) } context_parsed, sequence_parsed = tf.parse_single_sequence_example( serialized=serialized_example, context_features=context_features, sequence_features=sequence_features ) uid = context_parsed['uid'] sl = context_parsed['sl'] last = context_parsed['last'] sequences = sequence_parsed['hist'] sub_sample = sequence_parsed['sub_sample'] mask = sequence_parsed['mask'] return sequences, sub_sample, mask, uid, sl, last
Example #27
Source File: reader.py From hands-detection with MIT License | 5 votes |
def ReadInput(data_filepattern, shuffle, params): """Read the tf.SequenceExample tfrecord files. Args: data_filepattern: tf.SequenceExample tfrecord filepattern. shuffle: Whether to shuffle the examples. params: parameter dict. Returns: image sequence batch [batch_size, seq_len, image_size, image_size, channel]. """ image_size = params['image_size'] filenames = tf.gfile.Glob(data_filepattern) filename_queue = tf.train.string_input_producer(filenames, shuffle=shuffle) reader = tf.TFRecordReader() _, example = reader.read(filename_queue) feature_sepc = { 'moving_objs': tf.FixedLenSequenceFeature( shape=[image_size * image_size * 3], dtype=tf.float32)} _, features = tf.parse_single_sequence_example( example, sequence_features=feature_sepc) moving_objs = tf.reshape( features['moving_objs'], [params['seq_len'], image_size, image_size, 3]) if shuffle: examples = tf.train.shuffle_batch( [moving_objs], batch_size=params['batch_size'], num_threads=64, capacity=params['batch_size'] * 100, min_after_dequeue=params['batch_size'] * 4) else: examples = tf.train.batch([moving_objs], batch_size=params['batch_size'], num_threads=16, capacity=params['batch_size']) examples /= params['norm_scale'] return examples
Example #28
Source File: reader.py From HumanRecognition with MIT License | 5 votes |
def ReadInput(data_filepattern, shuffle, params): """Read the tf.SequenceExample tfrecord files. Args: data_filepattern: tf.SequenceExample tfrecord filepattern. shuffle: Whether to shuffle the examples. params: parameter dict. Returns: image sequence batch [batch_size, seq_len, image_size, image_size, channel]. """ image_size = params['image_size'] filenames = tf.gfile.Glob(data_filepattern) filename_queue = tf.train.string_input_producer(filenames, shuffle=shuffle) reader = tf.TFRecordReader() _, example = reader.read(filename_queue) feature_sepc = { 'moving_objs': tf.FixedLenSequenceFeature( shape=[image_size * image_size * 3], dtype=tf.float32)} _, features = tf.parse_single_sequence_example( example, sequence_features=feature_sepc) moving_objs = tf.reshape( features['moving_objs'], [params['seq_len'], image_size, image_size, 3]) if shuffle: examples = tf.train.shuffle_batch( [moving_objs], batch_size=params['batch_size'], num_threads=64, capacity=params['batch_size'] * 100, min_after_dequeue=params['batch_size'] * 4) else: examples = tf.train.batch([moving_objs], batch_size=params['batch_size'], num_threads=16, capacity=params['batch_size']) examples /= params['norm_scale'] return examples
Example #29
Source File: inputs.py From Action_Recognition_Zoo with MIT License | 5 votes |
def parse_sequence_example(serialized, image_feature, caption_feature): """Parses a tensorflow.SequenceExample into an image and caption. Args: serialized: A scalar string Tensor; a single serialized SequenceExample. image_feature: Name of SequenceExample context feature containing image data. caption_feature: Name of SequenceExample feature list containing integer captions. Returns: encoded_image: A scalar string Tensor containing a JPEG encoded image. caption: A 1-D uint64 Tensor with dynamically specified length. """ context, sequence = tf.parse_single_sequence_example( serialized, context_features={ image_feature: tf.FixedLenFeature([], dtype=tf.string) }, sequence_features={ caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64), }) encoded_image = context[image_feature] caption = sequence[caption_feature] return encoded_image, caption
Example #30
Source File: split_video.py From Y8M with Apache License 2.0 | 5 votes |
def frame_example_2_np(seq_example_bytes, max_quantized_value=2, min_quantized_value=-2): feature_names=['rgb','audio'] feature_sizes = [1024, 128] with tf.Graph().as_default(): contexts, features = tf.parse_single_sequence_example( seq_example_bytes, context_features={"video_id": tf.FixedLenFeature( [], tf.string), "labels": tf.VarLenFeature(tf.int64)}, sequence_features={ feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string) for feature_name in feature_names }) decoded_features = { name: tf.reshape( tf.cast(tf.decode_raw(features[name], tf.uint8), tf.float32), [-1, size]) for name, size in zip(feature_names, feature_sizes) } feature_matrices = { name: utils.Dequantize(decoded_features[name], max_quantized_value, min_quantized_value) for name in feature_names} with tf.Session() as sess: vid = sess.run(contexts['video_id']) labs = sess.run(contexts['labels'].values) rgb = sess.run(feature_matrices['rgb']) audio = sess.run(feature_matrices['audio']) return vid, labs, rgb, audio #%% Split frame level file into three video level files: all, 1st half, 2nd half.