Python tensorflow.PaddingFIFOQueue() Examples
The following are 30
code examples of tensorflow.PaddingFIFOQueue().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.

Example #1
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testMultiQueueConstructor(self): with tf.Graph().as_default(): q = tf.PaddingFIFOQueue(5, (tf.int32, tf.float32), ((), ()), shared_name="foo", name="Q") self.assertTrue(isinstance(q.queue_ref, tf.Tensor)) self.assertEquals(tf.string_ref, q.queue_ref.dtype) self.assertProtoEquals(""" name:'Q' op:'PaddingFIFOQueue' attr { key: 'component_types' value { list { type: DT_INT32 type : DT_FLOAT } } } attr { key: 'shapes' value { list { shape { } shape { } } } } attr { key: 'capacity' value { i: 5 } } attr { key: 'container' value { s: '' } } attr { key: 'shared_name' value { s: 'foo' } } """, q.queue_ref.op.node_def)
Example #2
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testParallelDequeueUpTo(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(1000, tf.float32, shapes=((),)) elems = [10.0 * x for x in range(1000)] enqueue_op = q.enqueue_many((elems,)) close_op = q.close() dequeued_t = q.dequeue_up_to(101) enqueue_op.run() close_op.run() # Dequeue up to 101 items in parallel on 10 threads, from closed queue. dequeued_elems = [] def dequeue(): dequeued_elems.extend(sess.run(dequeued_t)) threads = [self.checkedThread(target=dequeue) for _ in range(10)] for thread in threads: thread.start() for thread in threads: thread.join() self.assertItemsEqual(elems, dequeued_elems)
Example #3
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDequeueManyWithTensorParameter(self): with self.test_session(): # Define a first queue that contains integer counts. dequeue_counts = [random.randint(1, 10) for _ in range(100)] count_q = tf.PaddingFIFOQueue(100, tf.int32, ((),)) enqueue_counts_op = count_q.enqueue_many((dequeue_counts,)) total_count = sum(dequeue_counts) # Define a second queue that contains total_count elements. elems = [random.randint(0, 100) for _ in range(total_count)] q = tf.PaddingFIFOQueue(total_count, tf.int32, ((),)) enqueue_elems_op = q.enqueue_many((elems,)) # Define a subgraph that first dequeues a count, then DequeuesMany # that number of elements. dequeued_t = q.dequeue_many(count_q.dequeue()) enqueue_counts_op.run() enqueue_elems_op.run() dequeued_elems = [] for _ in dequeue_counts: dequeued_elems.extend(dequeued_t.eval()) self.assertEqual(elems, dequeued_elems)
Example #4
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDequeueFromClosedQueue(self): with self.test_session(): q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0] enqueue_op = q.enqueue_many((elems,)) close_op = q.close() dequeued_t = q.dequeue() enqueue_op.run() close_op.run() for elem in elems: self.assertEqual([elem], dequeued_t.eval()) # Expect the operation to fail due to the queue being closed. with self.assertRaisesRegexp(tf.errors.OutOfRangeError, "is closed and has insufficient"): dequeued_t.eval()
Example #5
Source File: data_loader.py From text-gan-tensorflow with MIT License | 6 votes |
def get_input_queues(path, word2idx, batch_size=32, num_threads=8): input_ph = tf.placeholder(tf.int32, shape=[None]) # [T] queue = tf.PaddingFIFOQueue(shapes=[[None, ]], dtypes=[tf.int32], capacity=5000,) # TODO: enqueue_many would be faster, would require batch and padding at numpy-level enqueue_op = queue.enqueue([input_ph]) def enqueue_data(sess): # for epoch in range(epoch_size): while True: # for idx, line in enumerate(read_data(path)): v = vectorize(line, word2idx) sess.run(enqueue_op, feed_dict={input_ph: v}) # dequeue_batch = queue.dequeue_many(batch_size) dequeue_op = queue.dequeue() dequeue_batch = tf.train.batch([dequeue_op], batch_size=batch_size, num_threads=num_threads, capacity=1000, dynamic_pad=True, name="batch_and_pad") # TODO: get corpus_size here return enqueue_data, dequeue_batch
Example #6
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBlockingDequeueFromClosedQueue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0] enqueue_op = q.enqueue_many((elems,)) close_op = q.close() dequeued_t = q.dequeue() enqueue_op.run() def dequeue(): for elem in elems: self.assertEqual([elem], sess.run(dequeued_t)) # Expect the operation to fail due to the queue being closed. with self.assertRaisesRegexp(tf.errors.OutOfRangeError, "is closed and has insufficient"): sess.run(dequeued_t) dequeue_thread = self.checkedThread(target=dequeue) dequeue_thread.start() # The close_op should run after the dequeue_thread has blocked. # TODO(mrry): Figure out how to do this without sleeping. time.sleep(0.1) close_op.run() dequeue_thread.join()
Example #7
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDequeueUpToFromClosedQueueReturnsRemainder(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0] enqueue_op = q.enqueue_many((elems,)) close_op = q.close() dequeued_t = q.dequeue_up_to(3) enqueue_op.run() def dequeue(): self.assertAllEqual(elems[:3], sess.run(dequeued_t)) self.assertAllEqual(elems[3:], sess.run(dequeued_t)) dequeue_thread = self.checkedThread(target=dequeue) dequeue_thread.start() # The close_op should run after the dequeue_thread has blocked. # TODO(mrry): Figure out how to do this without sleeping. time.sleep(0.1) close_op.run() dequeue_thread.join()
Example #8
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBlockingDequeueManyFromClosedQueue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0] enqueue_op = q.enqueue_many((elems,)) close_op = q.close() dequeued_t = q.dequeue_many(4) enqueue_op.run() def dequeue(): self.assertAllEqual(elems, sess.run(dequeued_t)) # Expect the operation to fail due to the queue being closed. with self.assertRaisesRegexp(tf.errors.OutOfRangeError, "is closed and has insufficient"): sess.run(dequeued_t) dequeue_thread = self.checkedThread(target=dequeue) dequeue_thread.start() # The close_op should run after the dequeue_thread has blocked. # TODO(mrry): Figure out how to do this without sleeping. time.sleep(0.1) close_op.run() dequeue_thread.join()
Example #9
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBlockingDequeueManyButNotAllFromClosedQueue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0] enqueue_op = q.enqueue_many((elems,)) close_op = q.close() dequeued_t = q.dequeue_many(3) enqueue_op.run() def dequeue(): self.assertAllEqual(elems[:3], sess.run(dequeued_t)) # Expect the operation to fail due to the queue being closed. with self.assertRaisesRegexp(tf.errors.OutOfRangeError, "is closed and has insufficient"): sess.run(dequeued_t) dequeue_thread = self.checkedThread(target=dequeue) dequeue_thread.start() # The close_op should run after the dequeue_thread has blocked. # TODO(mrry): Figure out how to do this without sleeping. time.sleep(0.1) close_op.run() dequeue_thread.join()
Example #10
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testParallelDequeueMany(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(1000, tf.float32, shapes=((),)) elems = [10.0 * x for x in range(1000)] enqueue_op = q.enqueue_many((elems,)) dequeued_t = q.dequeue_many(100) enqueue_op.run() # Dequeue 100 items in parallel on 10 threads. dequeued_elems = [] def dequeue(): dequeued_elems.extend(sess.run(dequeued_t)) threads = [self.checkedThread(target=dequeue) for _ in range(10)] for thread in threads: thread.start() for thread in threads: thread.join() self.assertItemsEqual(elems, dequeued_elems)
Example #11
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testEnqueueDequeueManyWrongPartiallyKnownShape(self): with self.test_session() as sess: # First dimension of second component is unknown, second # dimension must be 3. q = tf.PaddingFIFOQueue(10, (tf.int32, tf.int32), ((2, 2), (None, 3))) elems_ok = np.array([1] * 8).reshape((2, 2, 2)).astype(np.int32) elems_bad = tf.placeholder(tf.int32) enqueue_op = q.enqueue_many((elems_ok, elems_bad)) dequeued_t = q.dequeue_many(2) with self.assertRaisesRegexp( tf.errors.InvalidArgumentError, "Shape mismatch in tuple component 1. " r"Expected \[2,\?,3\], got \[2,3,4\]"): sess.run([enqueue_op], feed_dict={elems_bad: np.array([1] * 24).reshape((2, 3, 4))}) dequeued_t.eval()
Example #12
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBlockingDequeueManyFromClosedEmptyQueue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) close_op = q.close() dequeued_t = q.dequeue_many(4) def dequeue(): # Expect the operation to fail due to the queue being closed. with self.assertRaisesRegexp(tf.errors.OutOfRangeError, "is closed and has insufficient"): sess.run(dequeued_t) dequeue_thread = self.checkedThread(target=dequeue) dequeue_thread.start() # The close_op should run after the dequeue_thread has blocked. # TODO(mrry): Figure out how to do this without sleeping. time.sleep(0.1) close_op.run() dequeue_thread.join()
Example #13
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testConstructorWithShapes(self): with tf.Graph().as_default(): q = tf.PaddingFIFOQueue(5, (tf.int32, tf.float32), shapes=(tf.TensorShape([1, 1, 2, 3]), tf.TensorShape([5, 8])), name="Q") self.assertTrue(isinstance(q.queue_ref, tf.Tensor)) self.assertEquals(tf.string_ref, q.queue_ref.dtype) self.assertProtoEquals(""" name:'Q' op:'PaddingFIFOQueue' attr { key: 'component_types' value { list { type: DT_INT32 type : DT_FLOAT } } } attr { key: 'shapes' value { list { shape { dim { size: 1 } dim { size: 1 } dim { size: 2 } dim { size: 3 } } shape { dim { size: 5 } dim { size: 8 } } } } } attr { key: 'capacity' value { i: 5 } } attr { key: 'container' value { s: '' } } attr { key: 'shared_name' value { s: '' } } """, q.queue_ref.op.node_def)
Example #14
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBlockingEnqueueToFullQueue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(4, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0] enqueue_op = q.enqueue_many((elems,)) blocking_enqueue_op = q.enqueue((50.0,)) dequeued_t = q.dequeue() enqueue_op.run() def blocking_enqueue(): sess.run(blocking_enqueue_op) thread = self.checkedThread(target=blocking_enqueue) thread.start() # The dequeue ops should run after the blocking_enqueue_op has blocked. # TODO(mrry): Figure out how to do this without sleeping. time.sleep(0.1) for elem in elems: self.assertEqual([elem], dequeued_t.eval()) self.assertEqual([50.0], dequeued_t.eval()) thread.join()
Example #15
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBlockingEnqueueManyToFullQueue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(4, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0] enqueue_op = q.enqueue_many((elems,)) blocking_enqueue_op = q.enqueue_many(([50.0, 60.0],)) dequeued_t = q.dequeue() enqueue_op.run() def blocking_enqueue(): sess.run(blocking_enqueue_op) thread = self.checkedThread(target=blocking_enqueue) thread.start() # The dequeue ops should run after the blocking_enqueue_op has blocked. # TODO(mrry): Figure out how to do this without sleeping. time.sleep(0.1) for elem in elems: self.assertEqual([elem], dequeued_t.eval()) time.sleep(0.01) self.assertEqual([50.0], dequeued_t.eval()) self.assertEqual([60.0], dequeued_t.eval())
Example #16
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testParallelDequeue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0] enqueue_ops = [q.enqueue((x,)) for x in elems] dequeued_t = q.dequeue() # Enqueue every element using a single thread. for enqueue_op in enqueue_ops: enqueue_op.run() # Run one consumer thread for each element in elems. results = [] def dequeue(): results.append(sess.run(dequeued_t)) threads = [self.checkedThread(target=dequeue) for _ in enqueue_ops] for thread in threads: thread.start() for thread in threads: thread.join() self.assertItemsEqual(elems, results)
Example #17
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testParallelEnqueue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0] enqueue_ops = [q.enqueue((x,)) for x in elems] dequeued_t = q.dequeue() # Run one producer thread for each element in elems. def enqueue(enqueue_op): sess.run(enqueue_op) threads = [self.checkedThread(target=enqueue, args=(e,)) for e in enqueue_ops] for thread in threads: thread.start() for thread in threads: thread.join() # Dequeue every element using a single thread. results = [] for _ in xrange(len(elems)): results.append(dequeued_t.eval()) self.assertItemsEqual(elems, results)
Example #18
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testMultiEnqueueManyWithPartiallyKnownShapes(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue( 10, (tf.float32, tf.int32), shapes=((), (None,))) float_elems = [10.0, 20.0, 30.0, 40.0] int_elems = [[1, 2], [3, 4], [5, 6], [7, 8]] enqueue_op = q.enqueue_many((float_elems, int_elems)) dequeued_t = q.dequeue() enqueue_op.run() enqueue_op.run() for i in range(8): float_val, int_val = sess.run(dequeued_t) self.assertEqual(float_elems[i % 4], float_val) self.assertAllEqual(int_elems[i % 4], int_val)
Example #19
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBigDequeueMany(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(2, tf.int32, ((),)) elem = np.arange(4, dtype=np.int32) enq_list = [q.enqueue((e,)) for e in elem] deq = q.dequeue_many(4) results = [] def blocking_dequeue(): # Will only complete after 4 enqueues complete. results.extend(sess.run(deq)) thread = self.checkedThread(target=blocking_dequeue) thread.start() # The dequeue should start and then block. for enq in enq_list: # TODO(mrry): Figure out how to do this without sleeping. time.sleep(0.1) self.assertEqual(len(results), 0) sess.run(enq) # Enough enqueued to unblock the dequeue thread.join() self.assertAllEqual(elem, results)
Example #20
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSharedQueueSameSession(self): with self.test_session(): q1 = tf.PaddingFIFOQueue( 1, tf.float32, ((),), shared_name="shared_queue") q1.enqueue((10.0,)).run() q2 = tf.PaddingFIFOQueue( 1, tf.float32, ((),), shared_name="shared_queue") q1_size_t = q1.size() q2_size_t = q2.size() self.assertEqual(q1_size_t.eval(), [1]) self.assertEqual(q2_size_t.eval(), [1]) self.assertEqual(q2.dequeue().eval(), [10.0]) self.assertEqual(q1_size_t.eval(), [0]) self.assertEqual(q2_size_t.eval(), [0]) q2.enqueue((20.0,)).run() self.assertEqual(q1_size_t.eval(), [1]) self.assertEqual(q2_size_t.eval(), [1]) self.assertEqual(q1.dequeue().eval(), [20.0]) self.assertEqual(q1_size_t.eval(), [0]) self.assertEqual(q2_size_t.eval(), [0])
Example #21
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testParallelEnqueueAndDequeue(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(50, tf.float32, shapes=((),)) initial_elements = [10.0] * 49 q.enqueue_many((initial_elements,)).run() enqueue_op = q.enqueue((20.0,)) dequeued_t = q.dequeue() def enqueue(): for _ in xrange(100): sess.run(enqueue_op) def dequeue(): for _ in xrange(100): self.assertTrue(sess.run(dequeued_t) in (10.0, 20.0)) enqueue_threads = [self.checkedThread(target=enqueue) for _ in range(10)] dequeue_threads = [self.checkedThread(target=dequeue) for _ in range(10)] for enqueue_thread in enqueue_threads: enqueue_thread.start() for dequeue_thread in dequeue_threads: dequeue_thread.start() for enqueue_thread in enqueue_threads: enqueue_thread.join() for dequeue_thread in dequeue_threads: dequeue_thread.join() # Dequeue the initial count of elements to clean up. cleanup_elems = q.dequeue_many(49).eval() for elem in cleanup_elems: self.assertTrue(elem in (10.0, 20.0))
Example #22
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testDoesNotLoseValue(self): with self.test_session(): q = tf.PaddingFIFOQueue(1, tf.float32, ((),)) enqueue_op = q.enqueue((10.0,)) size_t = q.size() enqueue_op.run() for _ in range(500): self.assertEqual(size_t.eval(), [1])
Example #23
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testMultiDequeueManyWithPartiallyKnownShapes(self): with self.test_session() as sess: q = tf.PaddingFIFOQueue(10, (tf.float32, tf.int32), shapes=((), (None,))) float_elems = [ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0] int_elems = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16], [17, 18], [19, 20]] enqueue_op = q.enqueue_many((float_elems, int_elems)) dequeued_t = q.dequeue_many(4) dequeued_single_t = q.dequeue() enqueue_op.run() float_val, int_val = sess.run(dequeued_t) self.assertAllEqual(float_elems[0:4], float_val) self.assertAllEqual(int_elems[0:4], int_val) self.assertTrue( tf.TensorShape(float_val.shape).is_compatible_with( dequeued_t[0].get_shape())) self.assertTrue( tf.TensorShape(int_val.shape).is_compatible_with( dequeued_t[1].get_shape())) float_val, int_val = sess.run(dequeued_t) self.assertAllEqual(float_elems[4:8], float_val) self.assertAllEqual(int_elems[4:8], int_val) float_val, int_val = sess.run(dequeued_single_t) self.assertAllEqual(float_elems[8], float_val) self.assertAllEqual(int_elems[8], int_val) self.assertTrue( tf.TensorShape(float_val.shape).is_compatible_with( dequeued_single_t[0].get_shape())) self.assertTrue( tf.TensorShape(int_val.shape).is_compatible_with( dequeued_single_t[1].get_shape()))
Example #24
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testEnqueueWrongPartiallyKnownShapeAtRuntime(self): with self.test_session() as sess: # First dimension of second component is unknown, second # dimension must be 3. q = tf.PaddingFIFOQueue(10, (tf.int32, tf.int32), ((2, 2), (None, 3))) elems_ok = np.array([1] * 4).reshape((2, 2)).astype(np.int32) elems_bad = tf.placeholder(tf.int32) enqueue_op = q.enqueue((elems_ok, elems_bad)) with self.assertRaisesRegexp( tf.errors.InvalidArgumentError, r"Expected \[\?,3\], got \[3,4\]"): sess.run([enqueue_op], feed_dict={elems_bad: np.array([1] * 12).reshape((3, 4))})
Example #25
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testEnqueueWrongType(self): q = tf.PaddingFIFOQueue(10, (tf.int32, tf.float32), ((), ())) with self.assertRaises(ValueError): q.enqueue((tf.placeholder(tf.int32), tf.placeholder(tf.int32))) with self.assertRaises(ValueError): q.enqueue_many((tf.placeholder(tf.int32), tf.placeholder(tf.int32)))
Example #26
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testEnqueueManyEmptyTypeConversion(self): q = tf.PaddingFIFOQueue(10, (tf.int32, tf.float32), ((), ())) enq = q.enqueue_many(([], [])) self.assertEqual(tf.int32, enq.inputs[1].dtype) self.assertEqual(tf.float32, enq.inputs[2].dtype)
Example #27
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testBatchSizeMismatch(self): q = tf.PaddingFIFOQueue(10, (tf.int32, tf.int32, tf.int32), ((), (), ())) with self.assertRaises(ValueError): q.enqueue_many(([1, 2, 3], [1, 2], [1, 2, 3])) with self.assertRaises(ValueError): q.enqueue_many(([1, 2, 3], [1, 2], tf.placeholder(tf.int32))) with self.assertRaises(ValueError): q.enqueue_many((tf.placeholder(tf.int32), [1, 2], [1, 2, 3]))
Example #28
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testPartiallyKnownHighDimension(self): with self.test_session(): q = tf.PaddingFIFOQueue(10, tf.int32, ((4, None, 4, None),)) elems = np.array([[[[[x] * 4] * 4] * 4] * 4 for x in range(10)], np.int32) enqueue_op = q.enqueue_many((elems,)) dequeued_t = q.dequeue_many(10) enqueue_op.run() self.assertAllEqual(dequeued_t.eval(), elems)
Example #29
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testHighDimension(self): with self.test_session(): q = tf.PaddingFIFOQueue(10, tf.int32, ((4, 4, 4, 4),)) elems = np.array([[[[[x] * 4] * 4] * 4] * 4 for x in range(10)], np.int32) enqueue_op = q.enqueue_many((elems,)) dequeued_t = q.dequeue_many(10) enqueue_op.run() self.assertAllEqual(dequeued_t.eval(), elems)
Example #30
Source File: padding_fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testDequeueMany(self): with self.test_session(): q = tf.PaddingFIFOQueue(10, tf.float32, ((),)) elems = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0] enqueue_op = q.enqueue_many((elems,)) dequeued_t = q.dequeue_many(4) enqueue_op.run() self.assertAllEqual(elems[0:4], dequeued_t.eval()) self.assertAllEqual(elems[4:8], dequeued_t.eval())