Python tensorflow.depth_to_space() Examples
The following are 30
code examples of tensorflow.depth_to_space().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: dufvsr.py From PFNL with MIT License | 6 votes |
def forward(self, x, is_train): # shape of x: [B,T_in,H,W,C] # Generate filters and residual # Fx: [B,1,H,W,1*5*5,R*R] # Rx: [B,1,H,W,3*R*R] with tf.variable_scope('G',reuse=tf.AUTO_REUSE) as scope: Fx, Rx = FR_52L(x, is_train) x_c = [] for c in range(3): t = DynFilter3D(x[:,self.num_frames//2:self.num_frames//2+1,:,:,c], Fx[:,0,:,:,:,:], [1,5,5]) # [B,H,W,R*R] t = tf.depth_to_space(t, self.scale) # [B,H*R,W*R,1] x_c += [t] x = tf.concat(x_c, axis=3) # [B,H*R,W*R,3] x = tf.expand_dims(x, axis=1) Rx = depth_to_space_3D(Rx, self.scale) # [B,1,H*R,W*R,3] x += Rx return x
Example #2
Source File: modules.py From GAN-Voice-Conversion with MIT License | 6 votes |
def upsample2d_block( inputs, filters, kernel_size, strides, shuffle_size=2, name_prefix='upsample2d_block_'): h1 = conv2d_layer(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, activation=None, name=name_prefix + 'h1_conv') h1_shuffle = tf.depth_to_space(input=h1, block_size=2, name='h1_shuffle') h1_norm = instance_norm_layer(inputs=h1_shuffle, activation_fn=None, name=name_prefix + 'h1_norm') h1_gates = conv2d_layer(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, activation=None, name=name_prefix + 'h1_gates') h1_shuffle_gates = tf.depth_to_space(input=h1_gates, block_size=2, name='h1_shuffle_gates') h1_norm_gates = instance_norm_layer(inputs=h1_shuffle_gates, activation_fn=None, name=name_prefix + 'h1_norm_gates') h1_glu = gated_linear_layer(inputs=h1_norm, gates=h1_norm_gates, name=name_prefix + 'h1_glu') return h1_glu
Example #3
Source File: tensorflow_backend.py From keras-contrib with MIT License | 6 votes |
def depth_to_space(input, scale, data_format=None): """ Uses phase shift algorithm to convert channels/depth for spatial resolution. # Arguments input: Input tensor scale: n `int` that is `>= 2`. The size of the spatial block. data_format: 'channels_first' or 'channels_last'. Whether to use Theano or TensorFlow dimension ordering in inputs/kernels/ouputs. # Returns TODO (PR welcome): Filling this section. """ if data_format is None: data_format = K.image_data_format() data_format = data_format.lower() input = _preprocess_conv2d_input(input, data_format) out = tf.depth_to_space(input, scale) out = _postprocess_conv2d_output(out, data_format) return out
Example #4
Source File: gqn_vae.py From tf-gqn with Apache License 2.0 | 6 votes |
def vae_simple_decoder(z, scope="VAESimpleDecoder"): def _upsample_conv2d(net, factor, filters, **kwargs): net = tf.layers.conv2d(net, filters=factor*factor*filters, **kwargs) net = tf.depth_to_space(net, block_size=factor) return net with tf.variable_scope(scope): endpoints = {} net = z # shape (b, 1, 1, c) net = _upsample_conv2d( net, kernel_size=3, filters=128, factor=16, activation=tf.nn.relu, padding="SAME") # shape out: (b, 16, 16, 128) net = _upsample_conv2d( net, kernel_size=3, filters=512, factor=2, activation=tf.nn.relu, padding="SAME") # shape out: (b, 32, 32, 512) net = _upsample_conv2d( net, kernel_size=3, filters=512, factor=2, activation=tf.nn.relu, padding="SAME") # shape out: (b, 64, 64, 512) net = tf.layers.conv2d(net, kernel_size=3, filters=3, padding="SAME") return net, endpoints
Example #5
Source File: FFDNet.py From VideoSuperResolution with MIT License | 6 votes |
def build_graph(self): super(FFDNet, self).build_graph() # build inputs placeholder with tf.variable_scope(self.name): # build layers inputs = self.inputs_preproc[-1] / 255 if self.training: sigma = tf.random_uniform((), maxval=self.sigma / 255) inputs += tf.random_normal(tf.shape(inputs)) * sigma else: sigma = self.sigma / 255 inputs = tf.space_to_depth(inputs, block_size=self.space_down) noise_map = tf.ones_like(inputs)[..., 0:1] * sigma x = tf.concat([inputs, noise_map], axis=-1) x = self.relu_conv2d(x, 64, 3) for i in range(1, self.layers - 1): x = self.bn_relu_conv2d(x, 64, 3, use_bias=False) # the last layer w/o BN and ReLU x = self.conv2d(x, self.channel * self.space_down ** 2, 3) denoised = tf.depth_to_space(x, block_size=self.space_down) self.outputs.append(denoised * 255)
Example #6
Source File: mru.py From SketchySceneColorization with MIT License | 6 votes |
def upsample_conv(inputs, num_outputs, kernel_size, sn, activation_fn=None, normalizer_fn=None, normalizer_params=None, weights_regularizer=None, weights_initializer=ly.xavier_initializer_conv2d(), biases_initializer=tf.zeros_initializer(), data_format='NCHW'): output = inputs output = tf.concat([output, output, output, output], axis=1 if data_format == 'NCHW' else 3) if data_format == 'NCHW': output = tf.transpose(output, [0, 2, 3, 1]) output = tf.depth_to_space(output, 2) if data_format == 'NCHW': output = tf.transpose(output, [0, 3, 1, 2]) output = conv2d(output, num_outputs, kernel_size, sn=sn, activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, weights_regularizer=weights_regularizer, weights_initializer=weights_initializer, biases_initializer=biases_initializer, data_format=data_format) return output
Example #7
Source File: celeba64_3bit_official.py From flowpp with MIT License | 5 votes |
def inverse(self, y, **kwargs): return tf.depth_to_space(y, self.block_size), None
Example #8
Source File: gan_64x64.py From improved_wgan_training with MIT License | 5 votes |
def SubpixelConv2D(*args, **kwargs): kwargs['output_dim'] = 4*kwargs['output_dim'] output = lib.ops.conv2d.Conv2D(*args, **kwargs) output = tf.transpose(output, [0,2,3,1]) output = tf.depth_to_space(output, 2) output = tf.transpose(output, [0,3,1,2]) return output
Example #9
Source File: test_tf_converter.py From tf-coreml with Apache License 2.0 | 5 votes |
def test_depth_to_space(self): self._test_reorganize_data(tf.depth_to_space, [1, 1, 1, 4])
Example #10
Source File: imagenet32_official.py From flowpp with MIT License | 5 votes |
def inverse(self, y, **kwargs): return tf.depth_to_space(y, self.block_size), None
Example #11
Source File: flows.py From flowpp with MIT License | 5 votes |
def inverse(self, y, **kwargs): return tf.depth_to_space(y, self.block_size), None
Example #12
Source File: utils.py From PFNL with MIT License | 5 votes |
def depth_to_space_3D(x, block_size): ds_x = tf.shape(x) x = tf.reshape(x, [ds_x[0]*ds_x[1], ds_x[2], ds_x[3], ds_x[4]]) y = tf.depth_to_space(x, block_size) ds_y = tf.shape(y) x = tf.reshape(y, [ds_x[0], ds_x[1], ds_y[1], ds_y[2], ds_y[3]]) return x
Example #13
Source File: celeba128_5bit_official.py From flowpp with MIT License | 5 votes |
def inverse(self, y, **kwargs): return tf.depth_to_space(y, self.block_size), None
Example #14
Source File: celeba64_5bit_official.py From flowpp with MIT License | 5 votes |
def inverse(self, y, **kwargs): return tf.depth_to_space(y, self.block_size), None
Example #15
Source File: nn_extra_nvp_conditional.py From bruno with MIT License | 5 votes |
def backward(self, y, z, y_label=None): ys = int_shape(y) assert ys[3] % 4 == 0 x = tf.depth_to_space(y, 2) if z is not None: z = tf.depth_to_space(z, 2) return x, z
Example #16
Source File: nn_extra_nvp.py From bruno with MIT License | 5 votes |
def backward(self, y, z, sum_log_det_jacobian): ys = int_shape(y) assert ys[3] % 4 == 0 x = tf.depth_to_space(y, 2) if z is not None: z = tf.depth_to_space(z, 2) return x, z, sum_log_det_jacobian
Example #17
Source File: wgangp_64x64.py From f-AnoGAN with MIT License | 5 votes |
def UpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True): output = inputs output = tf.concat([output, output, output, output], 1) output = tf.transpose(output, [0,2,3,1]) output = tf.depth_to_space(output, 2) output = tf.transpose(output, [0,3,1,2]) output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases) return output
Example #18
Source File: layers.py From faceswap with GNU General Public License v3.0 | 5 votes |
def _depth_to_space(cls, ipt, scale, data_format=None): """ Uses phase shift algorithm to convert channels/depth for spatial resolution """ if data_format is None: data_format = K.image_data_format() data_format = data_format.lower() ipt = cls._preprocess_conv2d_input(ipt, data_format) out = tf.depth_to_space(ipt, scale) out = cls._postprocess_conv2d_output(out, data_format) return out
Example #19
Source File: gan_SR.py From improved_wgan_training with MIT License | 5 votes |
def SubpixelConv2D(*args, **kwargs): kwargs['output_dim'] = 4*kwargs['output_dim'] output = lib.ops.conv2d.Conv2D(*args, **kwargs) output = tf.transpose(output, [0,2,3,1]) output = tf.depth_to_space(output, 2) output = tf.transpose(output, [0,3,1,2]) return output
Example #20
Source File: utils.py From VSR-DUF-Reimplement with Apache License 2.0 | 5 votes |
def depth_to_space_3D(x, block_size): ds_x = tf.shape(x) x = tf.reshape(x, [ds_x[0]*ds_x[1], ds_x[2], ds_x[3], ds_x[4]]) y = tf.depth_to_space(x, block_size) ds_y = tf.shape(y) x = tf.reshape(y, [ds_x[0], ds_x[1], ds_y[1], ds_y[2], ds_y[3]]) return x
Example #21
Source File: wgan_gp.py From Disentangled-Person-Image-Generation with MIT License | 5 votes |
def SubpixelConv2D(*args, **kwargs): kwargs['output_dim'] = 4*kwargs['output_dim'] output = lib.ops.conv2d.Conv2D(*args, **kwargs) output = tf.transpose(output, [0,2,3,1]) output = tf.depth_to_space(output, 2) output = tf.transpose(output, [0,3,1,2]) return output
Example #22
Source File: wgan_gp.py From Pose-Guided-Person-Image-Generation with MIT License | 5 votes |
def SubpixelConv2D(*args, **kwargs): kwargs['output_dim'] = 4*kwargs['output_dim'] output = lib.ops.conv2d.Conv2D(*args, **kwargs) output = tf.transpose(output, [0,2,3,1]) output = tf.depth_to_space(output, 2) output = tf.transpose(output, [0,3,1,2]) return output
Example #23
Source File: tensorflow_backend.py From keras-onnx with MIT License | 5 votes |
def depth_to_space(input, scale, data_format=None): ''' Uses phase shift algorithm to convert channels/depth for spatial resolution ''' if data_format is None: data_format = image_data_format() if data_format == 'channels_first': data_format = 'NCHW' else: data_format = 'NHWC' data_format = data_format.lower() out = tf.depth_to_space(input, scale, data_format=data_format) return out
Example #24
Source File: mru.py From SketchySceneColorization with MIT License | 5 votes |
def upsample(input, data_format): assert data_format == 'NCHW' output = tf.concat([input, input, input, input], axis=1) output = tf.transpose(output, [0, 2, 3, 1]) output = tf.depth_to_space(output, 2) output = tf.transpose(output, [0, 3, 1, 2]) return output
Example #25
Source File: resnet_block.py From Robust-Conditional-GAN with MIT License | 5 votes |
def UpsampleConv(inputs, output_dim, filter_size=3, stride=1, name=None, spectral_normed=False, update_collection=None, inputs_norm=False, he_init=True, biases=True): output = inputs output = tf.concat([output, output, output, output], axis=3) output = tf.depth_to_space(output, 2) # w, h = inputs.shape.as_list()[1], inputs.shape.as_list()[2] # output = tf.image.resize_images(inputs, [w * 2, h * 2]) output = lib.ops.conv2d.Conv2D(output, output.shape.as_list()[-1], output_dim, filter_size, stride, name, spectral_normed=spectral_normed, update_collection=update_collection, inputs_norm=inputs_norm, he_init=he_init, biases=biases) return output
Example #26
Source File: gan_resnet.py From Robust-Conditional-GAN with MIT License | 5 votes |
def UpsampleConv(inputs, output_dim, filter_size=3, stride=1, name=None, spectral_normed=False, update_collection=None, inputs_norm=False, he_init=True, biases=True): output = inputs output = tf.concat([output, output, output, output], axis=3) output = tf.depth_to_space(output, 2) # w, h = inputs.shape.as_list()[1], inputs.shape.as_list()[2] # output = tf.image.resize_images(inputs, [w * 2, h * 2]) output = lib.ops.conv2d.Conv2D(output, output.shape.as_list()[-1], output_dim, filter_size, stride, name, spectral_normed=spectral_normed, update_collection=update_collection, he_init=he_init, biases=biases) return output
Example #27
Source File: gan_cifar_resnet.py From ambient-gan with MIT License | 5 votes |
def UpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True): output = inputs output = tf.concat([output, output, output, output], axis=1) output = tf.transpose(output, [0,2,3,1]) output = tf.depth_to_space(output, 2) output = tf.transpose(output, [0,3,1,2]) output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases) return output
Example #28
Source File: layers.py From ArtGAN with BSD 3-Clause "New" or "Revised" License | 5 votes |
def subpixel(inp, nfm, upscale=2, name='subpixel'): # assert inp.get_shape().as_list()[1] % upscale == 0 output = conv2d(inp, nout=nfm * (upscale ** 2), kernel=1, name=name, print_struct=False) output = tf.transpose(output, [0, 2, 3, 1]) output = tf.depth_to_space(output, upscale) output = tf.transpose(output, [0, 3, 1, 2]) print name + ': ' + str(output.get_shape().as_list()) return output
Example #29
Source File: eusr.py From tf-perceptual-eusr with Apache License 2.0 | 5 votes |
def _enhanced_upscaling_module(self, x, scale): if (scale & (scale - 1)) != 0: raise NotImplementedError for module_index in range(int(math.log(scale, 2))): with tf.variable_scope('m%d' % (module_index)): x_list = [] for pixel_index in range(4): with tf.variable_scope('px%d' % (pixel_index)): x = self._residual_module(x, num_features=self.num_conv_features, num_blocks=self.num_upscale_blocks) x_list.append(x) x = tf.concat(x_list, axis=3) x = tf.depth_to_space(x, 2) return x
Example #30
Source File: gan_ops.py From logo-gen with MIT License | 5 votes |
def ScaledUpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True): output = inputs output = lib.ops.concat.concat([output, output, output, output], axis=1) output = tf.transpose(output, [0,2,3,1]) output = tf.depth_to_space(output, 2) output = tf.transpose(output, [0,3,1,2]) output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases, gain=0.5) return output