Python tensorflow.VERSION Examples
The following are 30
code examples of tensorflow.VERSION().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def test_forward_mobilenet_v3(): """Test the Mobilenet V3 TF Lite model.""" # In MobilenetV3, some ops are not supported before tf 1.15 fbs schema if package_version.parse(tf.VERSION) < package_version.parse('1.15.0'): return tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/mobilenet_v3/checkpoints/v3-large_224_1.0_float.tgz", "v3-large_224_1.0_float/v3-large_224_1.0_float.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32') tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5) ####################################################################### # Inception # ---------
Example #2
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def _test_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape): # tflite 1.13 convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): with tf.Graph().as_default(): indices = tf.placeholder(shape=sparse_indices.shape, dtype=str(sparse_indices.dtype), name="indices") values = tf.placeholder(shape=sparse_values.shape, dtype=str(sparse_values.dtype), name="values") oshape = tf.constant(output_shape, shape=output_shape.shape, dtype=str(output_shape.dtype)) if default_value == None: output = tf.sparse_to_dense(indices, oshape, values) compare_tflite_with_tvm( [sparse_indices, sparse_values], ["indices", "values"], [indices, values], [output] ) else: dv = tf.placeholder(shape=(), dtype=str(default_value.dtype), name="default_value") output = tf.sparse_to_dense(indices, oshape, values, dv) compare_tflite_with_tvm( [sparse_indices, sparse_values, default_value], ["indices", "values", "default_value"], [indices, values, dv], [output] )
Example #3
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def test_forward_tflite2_qnn_inception_v1(): """Test the Quantized TFLite version 2.1.0 Inception V1 model.""" if package_version.parse(tf.VERSION) >= package_version.parse('2.1.0'): tflite_model_file = download_testdata( "https://raw.githubusercontent.com/dmlc/web-data/master/tensorflow/models/Quantized/inception_v1_quantized.tflite", "inception_v1_quantized.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = pre_processed_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, np.array(data), 'input_1') tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels)
Example #4
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def _test_range(start, limit, delta): # tflite 1.13 convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): tf.reset_default_graph() with tf.Graph().as_default(): start_scalar, limit_scalar, delta_scalar = \ tf.placeholder(dtype=start.dtype, shape=(), name="start"), \ tf.placeholder(dtype=limit.dtype, shape=(), name="limit"), \ tf.placeholder(dtype=delta.dtype, shape=(), name="delta") out = tf.range(start_scalar, limit_scalar, delta_scalar, name="range") compare_tflite_with_tvm( [start, limit, delta], ["start", "limit", "delta"], [start_scalar, limit_scalar, delta_scalar], [out], mode="vm", quantized=False )
Example #5
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def test_forward_tflite2_qnn_mobilenet_v2(): """Test the Quantized TFLite version 2.1.0 Mobilenet V2 model.""" if package_version.parse(tf.VERSION) >= package_version.parse('2.1.0'): tflite_model_file = download_testdata( "https://raw.githubusercontent.com/dmlc/web-data/master/tensorflow/models/Quantized/mobilenet_v2_quantized.tflite", "mobilenet_v2_quantized.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = pre_processed_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, np.array(data), 'input_1') tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) ####################################################################### # Quantized SSD Mobilenet # -----------------------
Example #6
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def _test_range_default(): # tflite 1.13 convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): tf.reset_default_graph() with tf.Graph().as_default(): inputs = [ tf.placeholder(dtype=tf.int32, shape=(), name="p1"), tf.placeholder(dtype=tf.int32, shape=(), name="p2") ] outputs = [ tf.range(start = inputs[0], limit = inputs[1]), # use default delta tf.range(start = inputs[1]) # use start as limit with 0 as the first item in the range ] compare_tflite_with_tvm( [np.int32(1), np.int32(18)], ["p1", "p2"], inputs, outputs, mode="vm" )
Example #7
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def test_tensor_array_size(): if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'): pytest.skip("Needs fixing for tflite >= 1.15.0") def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] np_data = np.array([[1.0, 2.0], [3.0, 4.0]]).astype(dtype_str) in_data = [np_data, np_data] t1 = tf.constant(np_data, dtype=dtype) t2 = tf.constant(np_data, dtype=dtype) ta1 = tf.TensorArray(dtype=dtype, size=2, infer_shape=infer_shape) ta2 = ta1.write(0, t1) ta3 = ta2.write(1, t2) out = ta3.size() g = tf.get_default_graph() compare_tf_with_tvm([], [], 'TensorArraySizeV3:0', mode='debug') for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True)
Example #8
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def test_all_unary_elemwise(): _test_forward_unary_elemwise(_test_abs) _test_forward_unary_elemwise(_test_floor) _test_forward_unary_elemwise(_test_exp) _test_forward_unary_elemwise(_test_log) _test_forward_unary_elemwise(_test_sin) _test_forward_unary_elemwise(_test_sqrt) _test_forward_unary_elemwise(_test_rsqrt) _test_forward_unary_elemwise(_test_neg) _test_forward_unary_elemwise(_test_square) # ceil and cos come with TFLite 1.14.0.post1 fbs schema if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_forward_unary_elemwise(_test_ceil) _test_forward_unary_elemwise(_test_cos) _test_forward_unary_elemwise(_test_round) # This fails with TF and Tflite 1.15.2, this could not have been tested # in CI or anywhere else. The failure mode is that we see a backtrace # from the converter that we need to provide a custom Tan operator # implementation. #_test_forward_unary_elemwise(_test_tan) _test_forward_unary_elemwise(_test_elu) ####################################################################### # Element-wise # ------------
Example #9
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def test_tensor_array_stack(): def run(dtype_str, infer_shape): if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'): pytest.skip("Needs fixing for tflite >= 1.15.0") with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant(np.array([[1.0], [2.0], [3.0]]).astype(dtype_str)) scatter_indices = tf.constant([2, 1, 0]) ta1 = tf.TensorArray(dtype=dtype, size=3, infer_shape=infer_shape) ta2 = ta1.scatter(scatter_indices, t) t1 = ta2.stack() print(t1) g = tf.get_default_graph() compare_tf_with_tvm([], [], ['TensorArrayStack/TensorArrayGatherV3:0'], mode='vm') for dtype in ["float32", "int8"]: run(dtype, True)
Example #10
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def _test_fill(dims, value_data, value_dtype): """ Use the fill op to create a tensor of value_data with constant dims.""" value_data = np.array(value_data, dtype=value_dtype) # TF 1.13 TFLite convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): with tf.Graph().as_default(): value = array_ops.placeholder(dtype=value_dtype, name="value", shape=[]) out = tf.fill(dims, value) compare_tflite_with_tvm([value_data], ["value"], [value], [out]) with tf.Graph().as_default(): input1 = array_ops.placeholder(dtype=value_dtype, name="input1", shape=dims) # Fill op gets converted to static tensor during conversion out = tf.fill(dims, value_data) out1 = tf.add(out, input1) input1_data = np.random.uniform(0, 5, size=dims).astype(value_dtype) compare_tflite_with_tvm([input1_data], ["input1"], [input1], [out1])
Example #11
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def test_tensor_array_unstack(): def run(dtype_str, input_shape, infer_shape): if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'): pytest.skip("Needs fixing for tflite >= 1.15.0") with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant(np.random.choice([0, 1, 2, 3], size=input_shape).astype(dtype.name)) ta1 = tf.TensorArray(dtype=dtype, infer_shape=infer_shape, size=input_shape[0]) ta2 = ta1.unstack(t) out0 = ta2.size() out1 = ta2.read(0) compare_tf_with_tvm([], [], 'TensorArraySizeV3:0', mode='debug') compare_tf_with_tvm([], [], 'TensorArrayReadV3:0', mode='debug') for dtype in ["float32", "int8"]: run(dtype, (5,), False) run(dtype, (5, 5), True) run(dtype, (5, 5, 5), False) run(dtype, (5, 5, 5, 5), True) ####################################################################### # ConcatV2 # --------
Example #12
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 6 votes |
def test_forward_add_n(): if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): x = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) y = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) z = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) m, n, o = x.astype(np.float32), y.astype(np.float32), z.astype(np.float32) in0 = x in1 = [x, y] in2 = (x, y, z) in3 = m in4 = [m, n] in5 = (m, n, o) _test_forward_add_n(in0) _test_forward_add_n(in1) _test_forward_add_n(in2) _test_forward_add_n(in3) _test_forward_add_n(in4) _test_forward_add_n(in5) ####################################################################### # Logical operators # -----------------
Example #13
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_all_logical(): data = [np.random.choice(a=[False, True], size=(2, 3, 4)).astype('bool'), np.random.choice(a=[False, True], size=(2, 3, 4)).astype('bool')] # boolean dtype is not supported by older versions than TFLite 1.15.0 if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'): _test_forward_logical_and(data) _test_forward_logical_or(data) _test_forward_logical_not(data) ####################################################################### # Zeros like # ----------
Example #14
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_convolution(): for quantized in [False, True]: _test_convolution([4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NHWC', quantized=quantized) _test_convolution([4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NHWC', quantized=quantized) _test_convolution([4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NHWC', quantized=quantized) _test_convolution([4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NHWC', quantized=quantized) # depthwise convolution _test_convolution([4, 8, 8, 176], [1, 1, 176, 1], [1, 1], [1, 1], 'SAME', 'NHWC', True, quantized=quantized) _test_convolution([4, 17, 17, 19], [3, 3, 19, 1], [1, 1], [2, 2], 'VALID', 'NHWC', True, quantized=quantized) _test_convolution([4, 17, 17, 124], [1, 1, 124, 1], [1, 1], [1, 1], 'SAME', 'NHWC', True, quantized=quantized) _test_convolution([4, 17, 17, 12], [3, 3, 12, 1], [1, 1], [2, 2], 'VALID', 'NHWC', True, quantized=quantized) _test_convolution([4, 17, 17, 12], [3, 3, 12, 2], [1, 1], [2, 2], 'VALID', 'NHWC', True, quantized=quantized) # depthwise convolution with single input channel _test_convolution([1, 76, 64, 1], [9, 5, 1, 96], [1, 1], [1, 1], 'SAME', 'NHWC', True, quantized=quantized) # TFLite2 quantized convolution testing if package_version.parse(tf.VERSION) >= package_version.parse('2.1.0'): _test_tflite2_quantized_convolution([1, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NHWC') _test_tflite2_quantized_convolution([1, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NHWC') _test_tflite2_quantized_convolution([1, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NHWC') _test_tflite2_quantized_convolution([1, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NHWC') # depthwise convolution _test_tflite2_quantized_depthwise_convolution([1, 8, 8, 128], [1, 1, 128, 1], [1, 1], [1, 1], 'SAME', 'NHWC', 1) _test_tflite2_quantized_depthwise_convolution([1, 17, 17, 12], [3, 3, 12, 1], [1, 1], [2, 2], 'VALID', 'NHWC', 1) _test_tflite2_quantized_depthwise_convolution([1, 24, 24, 3], [7, 7, 3, 8], [1, 1], [2, 2], 'SAME', 'NHWC', 8) ####################################################################### # Transpose Convolution # ---------------------
Example #15
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_all_elemwise(): _test_forward_elemwise(_test_add) _test_forward_elemwise_quantized(_test_add) _test_forward_elemwise(partial(_test_add, fused_activation_function="RELU")) # this is broken with tf upgrade 1.15.2 and hits a segfault that needs # further investigation. # _test_forward_elemwise(partial(_test_add, fused_activation_function="RELU6")) _test_forward_elemwise(_test_sub) _test_forward_elemwise_quantized(_test_sub) _test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU6")) _test_forward_elemwise(_test_mul) _test_forward_elemwise_quantized(_test_mul) _test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU6")) _test_forward_elemwise(_test_div) _test_forward_elemwise(partial(_test_div, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_div, fused_activation_function="RELU6")) _test_forward_elemwise(_test_pow) _test_forward_elemwise(_test_maximum) _test_forward_elemwise(_test_minimum) _test_forward_elemwise(_test_greater) _test_forward_elemwise(_test_squared_difference) _test_forward_elemwise(_test_greater_equal) _test_forward_elemwise(_test_less) _test_forward_elemwise(_test_less_equal) _test_forward_elemwise(_test_equal) _test_forward_elemwise(_test_not_equal) if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_forward_elemwise(_test_floor_divide) _test_forward_elemwise(_test_floor_mod) ####################################################################### # AddN # ----
Example #16
Source File: logger.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def _collect_tensorflow_info(run_info): run_info["tensorflow_version"] = { "version": tf.VERSION, "git_hash": tf.GIT_VERSION}
Example #17
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_quantize_dequantize(): """ Quantize Dequantize """ data = np.random.uniform(0, 1, (1, 4, 4, 3)).astype("float32") if package_version.parse(tf.VERSION) >= package_version.parse('2.1.0'): _test_quantize_dequantize(data) ####################################################################### # Pad # ---
Example #18
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_unpack(): """ UNPACK """ _test_unpack(np.array(np.random.uniform(0, 5, (3, 1)), dtype=np.int32), axis=1, num_unpacks=1) _test_unpack(np.array(np.random.uniform(0, 5, (3, 4)), dtype=np.float32), axis=0, num_unpacks=3) # tflite 1.13 doesn't accept negative axis if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_unpack(np.array(np.random.uniform(0, 5, (3, 6)), dtype=np.int32), axis=-2, num_unpacks=3) _test_unpack(np.array(np.random.uniform(0, 5, (2, 3, 4)), dtype=np.int32), axis=-3, num_unpacks=2) ####################################################################### # Local response normalization # ----------------------------
Example #19
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_local_response_normalization(): """ LOCAL_RESPONSE_NORMALIZATION """ data = np.random.uniform(size=(1, 6, 4, 3)).astype('float32') # LOCAL_RESPONSE_NORMALIZATION come with TFLite >= 1.14.0 fbs schema if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_local_response_normalization(data, depth_radius=5, bias=1, alpha=1, beta=0.5) ####################################################################### # L2 normalization # ----------------
Example #20
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def _test_relu(data, quantized=False): """ One iteration of ReLU """ if quantized: if package_version.parse(tf.VERSION) < package_version.parse('2.1.0'): pytest.skip("Testcase requires tflite version >= 2.1.0") data_in = tf.keras.layers.Input(shape=data.shape[1:]) relu = tf.keras.layers.ReLU()(data_in) keras_model = tf.keras.models.Model(inputs=data_in, outputs=relu) input_name = data_in.name.split(":")[0] # To create quantized values with dynamic range of activations, needs representative dataset def representative_data_gen(): for i in range(1): yield [data] tflite_model_quant = _quantize_keras_model(keras_model, representative_data_gen) tflite_output = run_tflite_graph(tflite_model_quant, data) tvm_output = run_tvm_graph(tflite_model_quant, data, input_name) tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5) else: with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = nn_ops.relu(in_data) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out])
Example #21
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_leaky_relu(): """ Leaky_ReLU """ _test_leaky_relu(np.random.uniform(-5, 5, (1, 6)).astype(np.float32), alpha=0.2) if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_leaky_relu(np.random.uniform(0, 255, (2, 3)).astype(np.uint8), alpha=0.3, quantized=True) ####################################################################### # ReLU_n1_to_1 # ------------
Example #22
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_depthtospace(): # DEPTH_TO_SPACE comes with TFLite >= 1.15.0 fbs schema if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'): _test_depthtospace(np.random.normal(size=[1, 32, 32, 4]).astype("float32"), 2) _test_depthtospace(np.random.normal(size=[1, 16, 8, 32]).astype("float32"), 4) ####################################################################### # SpaceToDepth # ------------
Example #23
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_reverse_sequence(): if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_reverse_sequence([4, 3], "float32", [3, 2, 1], 1, 0) _test_reverse_sequence([4, 3], "float32", [3, 2, 1, 3], 0, 1) _test_reverse_sequence([2, 3, 3, 3], "float32", [2, 3, 2], 2, 1) _test_reverse_sequence([2, 4, 6, 4, 5], "float32", [5, 3], 0, 2) _test_reverse_sequence([2, 4, 6, 4, 5], "float32", [5, 3, 1, 4], 3, 2) ####################################################################### # Sparse To Dense # ---------------
Example #24
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_qnn_mobilenet_v3_net(): """Test the Quantized TFLite Mobilenet V3 model.""" # In MobilenetV3, some ops are not supported before tf 1.15 fbs schema if package_version.parse(tf.VERSION) < package_version.parse('1.15.0'): pytest.skip("Unsupported in tflite < 1.15.0") else: pytest.skip("This segfaults with tensorflow 1.15.2 and above") tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/mobilenet_v3/checkpoints/v3-large_224_1.0_uint8.tgz", "v3-large_224_1.0_uint8/v3-large_224_1.0_uint8.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels)
Example #25
Source File: logger.py From models with Apache License 2.0 | 5 votes |
def _collect_tensorflow_info(run_info): run_info["tensorflow_version"] = { "version": tf.VERSION, "git_hash": tf.GIT_VERSION}
Example #26
Source File: logger.py From nsfw with Apache License 2.0 | 5 votes |
def _collect_tensorflow_info(run_info): run_info["tensorflow_version"] = { "version": tf.VERSION, "git_hash": tf.GIT_VERSION}
Example #27
Source File: logger.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _collect_tensorflow_info(run_info): run_info["tensorflow_version"] = { "version": tf.VERSION, "git_hash": tf.GIT_VERSION}
Example #28
Source File: logger.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _collect_tensorflow_info(run_info): run_info["tensorflow_version"] = { "version": tf.VERSION, "git_hash": tf.GIT_VERSION}
Example #29
Source File: geometry_utils.py From SPFN with MIT License | 5 votes |
def compute_consistent_plane_frame(normal): # Input: normal is Bx3 # Returns: x_axis, y_axis, both of dimension Bx3 batch_size = tf.shape(normal)[0] candidate_axes = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # Actually, 2 should be enough. This may still cause singularity TODO!!! y_axes = [] for tmp_axis in candidate_axes: tf_axis = tf.tile(tf.expand_dims(tf.constant(dtype=tf.float32, value=tmp_axis), axis=0), [batch_size, 1]) # Bx3 y_axes.append(tf.cross(normal, tf_axis)) y_axes = tf.stack(y_axes, axis=0) # QxBx3 y_axes_norm = tf.norm(y_axes, axis=2) # QxB # choose the axis with largest norm y_axes_chosen_idx = tf.argmax(y_axes_norm, axis=0) # B # y_axes_chosen[b, :] = y_axes[y_axes_chosen_idx[b], b, :] indices_0 = tf.tile(tf.expand_dims(y_axes_chosen_idx, axis=1), [1, 3]) # Bx3 indices_1 = tf.tile(tf.expand_dims(tf.range(batch_size), axis=1), [1, 3]) # Bx3 indices_2 = tf.tile(tf.expand_dims(tf.range(3), axis=0), [batch_size, 1]) # Bx3 indices = tf.stack([tf.cast(indices_0, tf.int32), indices_1, indices_2], axis=2) # Bx3x3 y_axes = tf.gather_nd(y_axes, indices=indices) # Bx3 if tf.VERSION == '1.4.1': y_axes = tf.nn.l2_normalize(y_axes, dim=1) else: y_axes = tf.nn.l2_normalize(y_axes, axis=1) x_axes = tf.cross(y_axes, normal) # Bx3 return x_axes, y_axes
Example #30
Source File: versions_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testVersion(self): self.assertEqual(type(tf.__version__), str) self.assertEqual(type(tf.VERSION), str) # This pattern will need to grow as we include alpha, builds, etc. self.assertRegexpMatches(tf.__version__, r'^\d+\.\d+\.\w+$') self.assertRegexpMatches(tf.VERSION, r'^\d+\.\d+\.\w+$')