Python tensorflow.TextLineReader() Examples
The following are 30
code examples of tensorflow.TextLineReader().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: PASCALVOC2012Classification.py From dynamic-training-bench with Mozilla Public License 2.0 | 6 votes |
def _read_image_and_box(self, bboxes_csv): """Extract the filename from the queue, read the image and produce a single box Returns: image, box """ reader = tf.TextLineReader(skip_header_lines=True) _, row = reader.read(bboxes_csv) # file ,y_min, x_min, y_max, x_max, label record_defaults = [[""], [0.], [0.], [0.], [0.], [0.]] # eg: # 2008_000033,0.1831831831831832,0.208,0.7717717717717718,0.952,0 filename, y_min, x_min, y_max, x_max, label = tf.decode_csv( row, record_defaults) image_path = os.path.join(self._data_dir, 'VOCdevkit', 'VOC2012', 'JPEGImages') + "/" + filename + ".jpg" # image is normalized in [-1,1], convert to #_image_depth depth image = read_image_jpg(image_path, depth=self._image_depth) return image, tf.stack([y_min, x_min, y_max, x_max, label])
Example #2
Source File: _ds_csv.py From tensorfx with Apache License 2.0 | 6 votes |
def read_instances(self, count, shuffle, epochs): """Reads the data represented by this DataSource using a TensorFlow reader. Arguments: epochs: The number of epochs or passes over the data to perform. Returns: A tensor containing instances that are read. """ # None implies unlimited; switch the value to None when epochs is 0. epochs = epochs or None files = tf.train.match_filenames_once(self._path, name='files') queue = tf.train.string_input_producer(files, num_epochs=epochs, shuffle=shuffle, name='queue') reader = tf.TextLineReader(name='reader') _, instances = reader.read_up_to(queue, count, name='read') return instances
Example #3
Source File: PASCALVOC2012Localization.py From dynamic-training-bench with Mozilla Public License 2.0 | 6 votes |
def _read_image_and_box(self, bboxes_csv): """Extract the filename from the queue, read the image and produce a single box Returns: image, [y_min, x_min, y_max, x_max, label] """ reader = tf.TextLineReader(skip_header_lines=True) _, row = reader.read(bboxes_csv) # file ,y_min, x_min, y_max, x_max, label record_defaults = [[""], [0.], [0.], [0.], [0.], [0.]] # eg: # 2008_000033,0.1831831831831832,0.208,0.7717717717717718,0.952,0 filename, y_min, x_min, y_max, x_max, label = tf.decode_csv( row, record_defaults) image_path = os.path.join(self._data_dir, 'VOCdevkit', 'VOC2012', 'JPEGImages') + "/" + filename + ".jpg" # image is normalized in [-1,1] image = read_image_jpg(image_path) return image, tf.stack([y_min, x_min, y_max, x_max, label])
Example #4
Source File: datasets.py From Machine-Learning-with-TensorFlow-1.x with MIT License | 6 votes |
def load_files(filename_queue): """ Read and parse examples from data files. Args: filename: A list of string: filenames to read from Returns: uint8image: a [height, width, depth] uint8 Tensor with the image data label: a int32 Tensor """ line_reader = tf.TextLineReader() key, line = line_reader.read(filename_queue) label, image_path = tf.decode_csv(records=line, record_defaults=[tf.constant([], dtype=tf.int32), tf.constant([], dtype=tf.string)], field_delim=' ') file_contents = tf.read_file(image_path) image = tf.image.decode_jpeg(file_contents, channels=3) return image, label
Example #5
Source File: datasets.py From self-supervision with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _voc_seg_load_file(path, epochs=None, shuffle=True, seed=0): PASCAL_ROOT = os.environ['VOC_DIR'] filename_queue = tf.train.string_input_producer([path], num_epochs=epochs, shuffle=shuffle, seed=seed) reader = tf.TextLineReader() key, value = reader.read(filename_queue) image_path, seg_path = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ') image_abspath = PASCAL_ROOT + image_path seg_abspath = PASCAL_ROOT + seg_path image_content = tf.read_file(image_abspath) image = decode_image(image_content, channels=3) image.set_shape([None, None, 3]) imgshape = tf.shape(image)[:2] imgname = image_path seg_content = tf.read_file(seg_abspath) seg = tf.cast(tf.image.decode_png(seg_content, channels=1), tf.int32) return image, seg, imgshape, imgname
Example #6
Source File: datasets.py From self-supervision with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _imagenet_load_file(path, epochs=None, shuffle=True, seed=0, subset='train', prepare_path=True): IMAGENET_ROOT = os.environ.get('IMAGENET_DIR', '') if not isinstance(path, list): path = [path] filename_queue = tf.train.string_input_producer(path, num_epochs=epochs, shuffle=shuffle, seed=seed) reader = tf.TextLineReader() key, value = reader.read(filename_queue) image_path, label_str = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ') if prepare_path: image_abspath = IMAGENET_ROOT + '/images/' + subset + image_path else: image_abspath = image_path image_content = tf.read_file(image_abspath) image = decode_image(image_content, channels=3) image.set_shape([None, None, 3]) imgshape = tf.shape(image)[:2] label = tf.string_to_number(label_str, out_type=tf.int32) return image, label, imgshape, image_path
Example #7
Source File: datasets.py From self-supervision with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _relpath_no_label_load_file(path, root_path, epochs=None, shuffle=True, seed=0): filename_queue = tf.train.string_input_producer([path], num_epochs=epochs, shuffle=shuffle, seed=seed) reader = tf.TextLineReader() key, value = reader.read(filename_queue) #image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ') image_path = value image_abspath = root_path + '/' + image_path image_content = tf.read_file(image_abspath) image = decode_image(image_content, channels=3) image.set_shape([None, None, 3]) imgshape = tf.shape(image)[:2] return image, imgshape, image_path
Example #8
Source File: datasets.py From self-supervision with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _abspath_no_label_load_file(path, epochs=None, shuffle=True, seed=0): filename_queue = tf.train.string_input_producer([path], num_epochs=epochs, shuffle=shuffle, seed=seed) reader = tf.TextLineReader() key, value = reader.read(filename_queue) #image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ') image_path = value image_abspath = image_path image_content = tf.read_file(image_abspath) image = decode_image(image_content, channels=3) image.set_shape([None, None, 3]) imgshape = tf.shape(image)[:2] return image, imgshape, image_path
Example #9
Source File: reader_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _testOneEpoch(self, files): with self.test_session() as sess: reader = tf.TextLineReader(name="test_reader") queue = tf.FIFOQueue(99, [tf.string], shapes=()) key, value = reader.read(queue) queue.enqueue_many([files]).run() queue.close().run() for i in range(self._num_files): for j in range(self._num_lines): k, v = sess.run([key, value]) self.assertAllEqual("%s:%d" % (files[i], j + 1), tf.compat.as_text(k)) self.assertAllEqual(self._LineText(i, j), v) with self.assertRaisesOpError("is closed and has insufficient elements " "\\(requested 1, current size 0\\)"): k, v = sess.run([key, value])
Example #10
Source File: reader_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testSkipHeaderLines(self): files = self._CreateFiles() with self.test_session() as sess: reader = tf.TextLineReader(skip_header_lines=1, name="test_reader") queue = tf.FIFOQueue(99, [tf.string], shapes=()) key, value = reader.read(queue) queue.enqueue_many([files]).run() queue.close().run() for i in range(self._num_files): for j in range(self._num_lines - 1): k, v = sess.run([key, value]) self.assertAllEqual("%s:%d" % (files[i], j + 2), tf.compat.as_text(k)) self.assertAllEqual(self._LineText(i, j + 1), v) with self.assertRaisesOpError("is closed and has insufficient elements " "\\(requested 1, current size 0\\)"): k, v = sess.run([key, value])
Example #11
Source File: supervisor_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testManagedEndOfInputOneQueue(self): # Tests that the supervisor finishes without an error when using # a fixed number of epochs, reading from a single queue. logdir = _test_dir("managed_end_of_input_one_queue") os.makedirs(logdir) data_path = self._csv_data(logdir) with tf.Graph().as_default(): # Create an input pipeline that reads the file 3 times. filename_queue = tf.train.string_input_producer([data_path], num_epochs=3) reader = tf.TextLineReader() _, csv = reader.read(filename_queue) rec = tf.decode_csv(csv, record_defaults=[[1], [1], [1]]) sv = tf.train.Supervisor(logdir=logdir) with sv.managed_session("") as sess: while not sv.should_stop(): sess.run(rec)
Example #12
Source File: supervisor_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testManagedEndOfInputTwoQueues(self): # Tests that the supervisor finishes without an error when using # a fixed number of epochs, reading from two queues, the second # one producing a batch from the first one. logdir = _test_dir("managed_end_of_input_two_queues") os.makedirs(logdir) data_path = self._csv_data(logdir) with tf.Graph().as_default(): # Create an input pipeline that reads the file 3 times. filename_queue = tf.train.string_input_producer([data_path], num_epochs=3) reader = tf.TextLineReader() _, csv = reader.read(filename_queue) rec = tf.decode_csv(csv, record_defaults=[[1], [1], [1]]) shuff_rec = tf.train.shuffle_batch(rec, 1, 6, 4) sv = tf.train.Supervisor(logdir=logdir) with sv.managed_session("") as sess: while not sv.should_stop(): sess.run(shuff_rec)
Example #13
Source File: ctr_funcs.py From pynlp with MIT License | 5 votes |
def tf_read_data(file_name_queue, label_col_idx, record_defaults): reader = tf.TextLineReader() key, value = reader.read(file_name_queue) # Default values, in case of empty columns. Also specifies the type of the decoded result. cols = tf.decode_csv(value, record_defaults=record_defaults) # you can only process the data using tf ops label = cols.pop(label_col_idx) feature = cols # Retrieve a single instance return feature, label # load training data
Example #14
Source File: dense_classifier_use_queue.py From tensorflow_template_application with Apache License 2.0 | 5 votes |
def read_and_decode_csv(filename_queue): # Notice that it supports label in the last column only reader = tf.TextLineReader() key, value = reader.read(filename_queue) record_defaults = [[1.0] for i in range(FLAGS.feature_size)] + [[0]] columns = tf.decode_csv(value, record_defaults=record_defaults) label = columns[-1] features = tf.stack(columns[0:-1]) return label, features
Example #15
Source File: ctr_funcs.py From pynlp with MIT License | 5 votes |
def tf_read_data_wo_label(file_name_queue, record_defaults): reader = tf.TextLineReader() key, value = reader.read(file_name_queue) # Default values, in case of empty columns. Also specifies the type of the decoded result. cols = tf.decode_csv(value, record_defaults=record_defaults) # you can only process the data using tf ops feature = cols # Retrieve a single instance return feature # load training data
Example #16
Source File: ctr_funcs.py From pynlp with MIT License | 5 votes |
def tf_read_data(file_name_queue, label_col_idx, record_defaults): reader = tf.TextLineReader() key, value = reader.read(file_name_queue) # Default values, in case of empty columns. Also specifies the type of the decoded result. cols = tf.decode_csv(value, record_defaults=record_defaults) # you can only process the data using tf ops label = cols.pop(label_col_idx) feature = cols # Retrieve a single instance return feature, label
Example #17
Source File: data_loader.py From Unsupervised-Attention-guided-Image-to-Image-Translation with MIT License | 5 votes |
def _load_samples(csv_name, image_type): filename_queue = tf.train.string_input_producer( [csv_name]) reader = tf.TextLineReader() _, csv_filename = reader.read(filename_queue) record_defaults = [tf.constant([], dtype=tf.string), tf.constant([], dtype=tf.string)] filename_i, filename_j = tf.decode_csv( csv_filename, record_defaults=record_defaults) file_contents_i = tf.read_file(filename_i) file_contents_j = tf.read_file(filename_j) if image_type == '.jpg': image_decoded_A = tf.image.decode_jpeg( file_contents_i, channels=model.IMG_CHANNELS) image_decoded_B = tf.image.decode_jpeg( file_contents_j, channels=model.IMG_CHANNELS) elif image_type == '.png': image_decoded_A = tf.image.decode_png( file_contents_i, channels=model.IMG_CHANNELS, dtype=tf.uint8) image_decoded_B = tf.image.decode_png( file_contents_j, channels=model.IMG_CHANNELS, dtype=tf.uint8) return image_decoded_A, image_decoded_B
Example #18
Source File: input_pipeline.py From reaction_prediction_seq2seq with Apache License 2.0 | 5 votes |
def make_data_provider(self, **kwargs): decoder_source = split_tokens_decoder.SplitTokensDecoder( tokens_feature_name="source_tokens", length_feature_name="source_len", append_token="SEQUENCE_END", delimiter=self.params["source_delimiter"]) dataset_source = tf.contrib.slim.dataset.Dataset( data_sources=self.params["source_files"], reader=tf.TextLineReader, decoder=decoder_source, num_samples=None, items_to_descriptions={}) dataset_target = None if len(self.params["target_files"]) > 0: decoder_target = split_tokens_decoder.SplitTokensDecoder( tokens_feature_name="target_tokens", length_feature_name="target_len", prepend_token="SEQUENCE_START", append_token="SEQUENCE_END", delimiter=self.params["target_delimiter"]) dataset_target = tf.contrib.slim.dataset.Dataset( data_sources=self.params["target_files"], reader=tf.TextLineReader, decoder=decoder_target, num_samples=None, items_to_descriptions={}) return parallel_data_provider.ParallelDataProvider( dataset1=dataset_source, dataset2=dataset_target, shuffle=self.params["shuffle"], num_epochs=self.params["num_epochs"], **kwargs)
Example #19
Source File: common.py From HyperGAN with MIT License | 5 votes |
def __init__(self, config, batch_size, one_hot=False): self.lookup = None reader = tf.TextLineReader() filename_queue = tf.train.string_input_producer(["chargan.txt"]) key, x = reader.read(filename_queue) vocabulary = self.get_vocabulary() table = tf.contrib.lookup.string_to_index_table_from_tensor( mapping = vocabulary, default_value = 0) x = tf.string_join([x, tf.constant(" " * 64)]) x = tf.substr(x, [0], [64]) x = tf.string_split(x,delimiter='') x = tf.sparse_tensor_to_dense(x, default_value=' ') x = tf.reshape(x, [64]) x = table.lookup(x) self.one_hot = one_hot if one_hot: x = tf.one_hot(x, len(vocabulary)) x = tf.cast(x, dtype=tf.float32) x = tf.reshape(x, [1, int(x.get_shape()[0]), int(x.get_shape()[1]), 1]) else: x = tf.cast(x, dtype=tf.float32) x -= len(vocabulary)/2.0 x /= len(vocabulary)/2.0 x = tf.reshape(x, [1,1, 64, 1]) num_preprocess_threads = 8 x = tf.train.shuffle_batch( [x], batch_size=batch_size, num_threads=num_preprocess_threads, capacity= 5000, min_after_dequeue=500, enqueue_many=True) self.x = x self.table = table
Example #20
Source File: data_loader.py From cyclegan with MIT License | 5 votes |
def _load_samples(csv_name, image_type): filename_queue = tf.train.string_input_producer( [csv_name]) reader = tf.TextLineReader() _, csv_filename = reader.read(filename_queue) record_defaults = [tf.constant([], dtype=tf.string), tf.constant([], dtype=tf.string)] filename_i, filename_j = tf.decode_csv( csv_filename, record_defaults=record_defaults) file_contents_i = tf.read_file(filename_i) file_contents_j = tf.read_file(filename_j) if image_type == '.jpg': image_decoded_A = tf.image.decode_jpeg( file_contents_i, channels=model.IMG_CHANNELS) image_decoded_B = tf.image.decode_jpeg( file_contents_j, channels=model.IMG_CHANNELS) elif image_type == '.png': image_decoded_A = tf.image.decode_png( file_contents_i, channels=model.IMG_CHANNELS, dtype=tf.uint8) image_decoded_B = tf.image.decode_png( file_contents_j, channels=model.IMG_CHANNELS, dtype=tf.uint8) return image_decoded_A, image_decoded_B
Example #21
Source File: datasets.py From InceptionV3_TensorFlow with MIT License | 5 votes |
def test_inputs(self, csv, batch_size, verbose=False): print("input csv file path: %s, batch size: %d" % (csv, batch_size)) filename_queue = tf.train.string_input_producer([csv], shuffle=False) reader = tf.TextLineReader() _, serialized_example = reader.read(filename_queue) filename, label = tf.decode_csv(serialized_example, [["path"], [0]]) label = tf.cast(label, tf.int32) jpg = tf.read_file(filename) image = tf.image.decode_jpeg(jpg, channels=3) image = tf.cast(image, tf.float32) if verbose: print "original image shape:" print image.get_shape() # resize to distort dist = tf.image.resize_images(image, (FLAGS.scale_h, FLAGS.scale_w)) # random crop dist = tf.image.resize_image_with_crop_or_pad(dist, FLAGS.input_h, FLAGS.input_w) min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(FLAGS.num_examples_per_epoch_for_train * min_fraction_of_examples_in_queue) print ( 'filling queue with %d train images before starting to train. This will take a few minutes.' % min_queue_examples) return self._generate_image_and_label_batch(dist, label, min_queue_examples, batch_size, shuffle=False)
Example #22
Source File: datasets.py From InceptionV3_TensorFlow with MIT License | 5 votes |
def csv_inputs(self, csv, batch_size, distorted=False, verbose=False): print("input csv file path: %s, batch size: %d" % (csv, batch_size)) filename_queue = tf.train.string_input_producer([csv], shuffle=True) reader = tf.TextLineReader() _, serialized_example = reader.read(filename_queue) filename, label = tf.decode_csv(serialized_example, [["path"], [0]]) label = tf.cast(label, tf.int32) jpg = tf.read_file(filename) image = tf.image.decode_jpeg(jpg, channels=3) image = tf.cast(image, tf.float32) if verbose: print "original image shape:" print image.get_shape() if distorted: # resize to distort dist = tf.image.resize_images(image, (FLAGS.scale_h, FLAGS.scale_w)) # random crop dist = tf.image.resize_image_with_crop_or_pad(dist, FLAGS.input_h, FLAGS.input_w) # random flip dist = tf.image.random_flip_left_right(dist) # color constancy #dist = self.distort_color(dist) else: # resize to input dist = tf.image.resize_images(image, FLAGS.input_h, FLAGS.input_w) if verbose: print "dist image shape:" print dist.get_shape() min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(FLAGS.num_examples_per_epoch_for_train * min_fraction_of_examples_in_queue) print ('filling queue with %d train images before starting to train. This will take a few minutes.' % min_queue_examples) return self._generate_image_and_label_batch(dist, label, min_queue_examples, batch_size)
Example #23
Source File: ctr_funcs.py From deepmcp with MIT License | 5 votes |
def tf_read_data(file_name_queue, label_col_idx, record_defaults): reader = tf.TextLineReader() key, value = reader.read(file_name_queue) # Default values, in case of empty columns. Also specifies the type of the decoded result. cols = tf.decode_csv(value, record_defaults=record_defaults) # you can only process the data using tf ops label = cols.pop(label_col_idx) feature = cols # Retrieve a single instance return feature, label
Example #24
Source File: ctr_funcs.py From deepmcp with MIT License | 5 votes |
def tf_read_data_wo_label(file_name_queue, record_defaults): reader = tf.TextLineReader() key, value = reader.read(file_name_queue) # Default values, in case of empty columns. Also specifies the type of the decoded result. cols = tf.decode_csv(value, record_defaults=record_defaults) # you can only process the data using tf ops feature = cols # Retrieve a single instance return feature # load training data
Example #25
Source File: input_pipeline.py From conv_seq2seq with Apache License 2.0 | 5 votes |
def make_data_provider(self, **kwargs): decoder_source = split_tokens_decoder.SplitTokensDecoder( tokens_feature_name="source_tokens", length_feature_name="source_len", append_token="SEQUENCE_END", delimiter=self.params["source_delimiter"]) dataset_source = tf.contrib.slim.dataset.Dataset( data_sources=self.params["source_files"], reader=tf.TextLineReader, decoder=decoder_source, num_samples=None, items_to_descriptions={}) dataset_target = None if len(self.params["target_files"]) > 0: decoder_target = split_tokens_decoder.SplitTokensDecoder( tokens_feature_name="target_tokens", length_feature_name="target_len", prepend_token="SEQUENCE_START", append_token="SEQUENCE_END", delimiter=self.params["target_delimiter"]) dataset_target = tf.contrib.slim.dataset.Dataset( data_sources=self.params["target_files"], reader=tf.TextLineReader, decoder=decoder_target, num_samples=None, items_to_descriptions={}) return parallel_data_provider.ParallelDataProvider( dataset1=dataset_source, dataset2=dataset_target, shuffle=self.params["shuffle"], num_epochs=self.params["num_epochs"], **kwargs)
Example #26
Source File: input_pipeline.py From conv_seq2seq with Apache License 2.0 | 5 votes |
def make_data_provider(self, **kwargs): decoder_source = split_tokens_decoder.SplitTokensDecoder( tokens_feature_name="source_tokens", length_feature_name="source_len", append_token="SEQUENCE_END", delimiter=self.params["source_delimiter"]) dataset_source = tf.contrib.slim.dataset.Dataset( data_sources=self.params["source_files"], reader=tf.TextLineReader, decoder=decoder_source, num_samples=None, items_to_descriptions={}) dataset_target = None if len(self.params["target_files"]) > 0: decoder_target = split_tokens_decoder.SplitTokensDecoder( tokens_feature_name="target_tokens", length_feature_name="target_len", prepend_token="SEQUENCE_END", append_token="SEQUENCE_END", delimiter=self.params["target_delimiter"]) dataset_target = tf.contrib.slim.dataset.Dataset( data_sources=self.params["target_files"], reader=tf.TextLineReader, decoder=decoder_target, num_samples=None, items_to_descriptions={}) return parallel_data_provider.ParallelDataProvider( dataset1=dataset_source, dataset2=dataset_target, shuffle=self.params["shuffle"], num_epochs=self.params["num_epochs"], **kwargs)
Example #27
Source File: input_pipeline.py From seq2seq with Apache License 2.0 | 5 votes |
def make_data_provider(self, **kwargs): decoder_source = split_tokens_decoder.SplitTokensDecoder( tokens_feature_name="source_tokens", length_feature_name="source_len", append_token="SEQUENCE_END", delimiter=self.params["source_delimiter"]) dataset_source = tf.contrib.slim.dataset.Dataset( data_sources=self.params["source_files"], reader=tf.TextLineReader, decoder=decoder_source, num_samples=None, items_to_descriptions={}) dataset_target = None if len(self.params["target_files"]) > 0: decoder_target = split_tokens_decoder.SplitTokensDecoder( tokens_feature_name="target_tokens", length_feature_name="target_len", prepend_token="SEQUENCE_START", append_token="SEQUENCE_END", delimiter=self.params["target_delimiter"]) dataset_target = tf.contrib.slim.dataset.Dataset( data_sources=self.params["target_files"], reader=tf.TextLineReader, decoder=decoder_target, num_samples=None, items_to_descriptions={}) return parallel_data_provider.ParallelDataProvider( dataset1=dataset_source, dataset2=dataset_target, shuffle=self.params["shuffle"], num_epochs=self.params["num_epochs"], **kwargs)
Example #28
Source File: data_loader.py From Img2Img-Translation-Networks with MIT License | 5 votes |
def _load_samples(csv_name): """Read and decode a pair of images. Args: csv_name: A string that describes the name of the csv file. Returns: image_decoded_a: A tensor as the decoded first image. image_decoded_b: A tensor as the decoded second image. filename_i: A tensor as the name of the first image. filename_j: A tensor as the name of the second image. """ filename_queue = tf.train.string_input_producer( [csv_name]) reader = tf.TextLineReader() _, csv_filename = reader.read(filename_queue) record_defaults = [tf.constant([], dtype=tf.string), tf.constant([], dtype=tf.string)] filename_i, filename_j = tf.decode_csv( csv_filename, record_defaults=record_defaults) file_contents_i = tf.read_file(filename_i) file_contents_j = tf.read_file(filename_j) # syn image is png, celebA is jpg. image_decoded_a = tf.image.decode_png( file_contents_i, channels=model.IMG_CHANNELS, dtype=tf.uint8) image_decoded_b = tf.image.decode_jpeg( file_contents_j, channels=model.IMG_CHANNELS) return image_decoded_a, image_decoded_b, filename_i, filename_j
Example #29
Source File: ctr_funcs.py From dstn with MIT License | 5 votes |
def tf_read_data(file_name_queue, label_col_idx, record_defaults): reader = tf.TextLineReader() key, value = reader.read(file_name_queue) # Default values, in case of empty columns. Also specifies the type of the decoded result. cols = tf.decode_csv(value, record_defaults=record_defaults) # you can only process the data using tf ops label = cols.pop(label_col_idx) feature = cols # Retrieve a single instance return feature, label # load training data
Example #30
Source File: graph_io_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def test_read_text_lines(self): gfile.Glob = self._orig_glob filename = self._create_temp_file("ABC\nDEF\nGHK\n") batch_size = 1 queue_capacity = 5 name = "my_batch" with tf.Graph().as_default() as g, self.test_session(graph=g) as session: inputs = tf.contrib.learn.io.read_batch_examples( filename, batch_size, reader=tf.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, name=name) self.assertAllEqual((None,), inputs.get_shape().as_list()) session.run(tf.local_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(session, coord=coord) self.assertAllEqual(session.run(inputs), [b"ABC"]) self.assertAllEqual(session.run(inputs), [b"DEF"]) self.assertAllEqual(session.run(inputs), [b"GHK"]) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads)