Python tensorflow.random_gamma() Examples
The following are 14
code examples of tensorflow.random_gamma().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: random_gamma_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testShape(self): # Fully known shape. rnd = tf.random_gamma([150], 2.0) self.assertEqual([150], rnd.get_shape().as_list()) rnd = tf.random_gamma([150], 2.0, beta=[3.0, 4.0]) self.assertEqual([150, 2], rnd.get_shape().as_list()) rnd = tf.random_gamma([150], tf.ones([1, 2, 3])) self.assertEqual([150, 1, 2, 3], rnd.get_shape().as_list()) rnd = tf.random_gamma([20, 30], tf.ones([1, 2, 3])) self.assertEqual([20, 30, 1, 2, 3], rnd.get_shape().as_list()) rnd = tf.random_gamma([123], tf.placeholder(tf.float32, shape=(2,))) self.assertEqual([123, 2], rnd.get_shape().as_list()) # Partially known shape. rnd = tf.random_gamma(tf.placeholder(tf.int32, shape=(1,)), tf.ones([7, 3])) self.assertEqual([None, 7, 3], rnd.get_shape().as_list()) rnd = tf.random_gamma(tf.placeholder(tf.int32, shape=(3,)), tf.ones([9, 6])) self.assertEqual([None, None, None, 9, 6], rnd.get_shape().as_list()) # Unknown shape. rnd = tf.random_gamma(tf.placeholder(tf.int32), tf.placeholder(tf.float32)) self.assertIs(None, rnd.get_shape().ndims) rnd = tf.random_gamma([50], tf.placeholder(tf.float32)) self.assertIs(None, rnd.get_shape().ndims)
Example #2
Source File: multivariate.py From zhusuan with MIT License | 5 votes |
def _sample(self, n_samples): samples = tf.random_gamma([n_samples], self.alpha, beta=1, dtype=self.dtype) return samples / tf.reduce_sum(samples, -1, keepdims=True)
Example #3
Source File: univariate.py From zhusuan with MIT License | 5 votes |
def _sample(self, n_samples): return tf.random_gamma([n_samples], self.alpha, beta=self.beta, dtype=self.dtype)
Example #4
Source File: univariate.py From zhusuan with MIT License | 5 votes |
def _sample(self, n_samples): alpha, beta = maybe_explicit_broadcast( self.alpha, self.beta, 'alpha', 'beta') x = tf.random_gamma([n_samples], alpha, beta=1, dtype=self.dtype) y = tf.random_gamma([n_samples], beta, beta=1, dtype=self.dtype) return x / (x + y)
Example #5
Source File: univariate.py From zhusuan with MIT License | 5 votes |
def _sample(self, n_samples): gamma = tf.random_gamma([n_samples], self.alpha, beta=self.beta, dtype=self.dtype) return 1 / gamma
Example #6
Source File: random_gamma_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def _Sampler(self, num, alpha, beta, dtype, use_gpu, seed=None): def func(): with self.test_session(use_gpu=use_gpu, graph=tf.Graph()) as sess: rng = tf.random_gamma([num], alpha, beta=beta, dtype=dtype, seed=seed) ret = np.empty([10, num]) for i in xrange(10): ret[i, :] = sess.run(rng) return ret return func
Example #7
Source File: random_gamma_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testNoCSE(self): """CSE = constant subexpression eliminator. SetIsStateful() should prevent two identical random ops from getting merged. """ for dtype in tf.float16, tf.float32, tf.float64: for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): rnd1 = tf.random_gamma([24], 2.0, dtype=dtype) rnd2 = tf.random_gamma([24], 2.0, dtype=dtype) diff = rnd2 - rnd1 self.assertGreater(np.linalg.norm(diff.eval()), 0.1)
Example #8
Source File: tensorboard_output.py From gym-sawyer with MIT License | 5 votes |
def _get_histogram_var_by_type(self, histogram_type, shape, name=None, **kwargs): with tf.name_scope(name, "get_hist_{}".format(histogram_type)): if histogram_type == "normal": # Make a normal distribution, with a shifting mean mean = tf.Variable(kwargs['mean']) stddev = tf.Variable(kwargs['stddev']) return tf.random_normal( shape=shape, mean=mean, stddev=stddev), [mean, stddev] elif histogram_type == "gamma": # Add a gamma distribution alpha = tf.Variable(kwargs['alpha']) return tf.random_gamma(shape=shape, alpha=alpha), [alpha] elif histogram_type == "poisson": lam = tf.Variable(kwargs['lam']) return tf.random_poisson(shape=shape, lam=lam), [lam] elif histogram_type == "uniform": # Add a uniform distribution maxval = tf.Variable(kwargs['maxval']) return tf.random_uniform(shape=shape, maxval=maxval), [maxval] raise Exception('histogram type error %s' % histogram_type, 'builtin type', self._histogram_distribute_list)
Example #9
Source File: tensorflow.py From deepx with MIT License | 5 votes |
def random_gamma(self, shape, alpha, beta=None): return tf.random_gamma(shape, alpha, beta=beta) pass
Example #10
Source File: elementary.py From elbow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _sample(self, alpha, beta): gammas = tf.random_gamma(shape=self.shape, alpha=alpha, beta=beta) return gammas
Example #11
Source File: elementary.py From elbow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _sample(self, alpha, beta): X = tf.random_gamma(shape=self.shape, alpha=alpha, beta=1) Y = tf.random_gamma(shape=self.shape, alpha=beta, beta=1) Z = X/(X+Y) return Z
Example #12
Source File: elementary.py From elbow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _sample(self, alpha): # broadcast alpha from scalar to vector, if necessary alpha = alpha * tf.ones(shape=self.shape, dtype=self.dtype) gammas = tf.squeeze(tf.random_gamma(shape=(1,), alpha=alpha, beta=1)) sample = RowNormalize.transform(gammas) return sample
Example #13
Source File: pcrl.py From cornac with Apache License 2.0 | 5 votes |
def sample_pi(self, alpha, beta): Gam = tf.random_gamma([1], alpha=alpha, beta=beta, name="Gam", seed=None)[0] return self.G_inv(Gam, alpha, beta) # shape augmentation
Example #14
Source File: utils_tf.py From cleverhans with MIT License | 5 votes |
def random_exponential(shape, rate=1.0, dtype=tf.float32, seed=None): """ Helper function to sample from the exponential distribution, which is not included in core TensorFlow. """ return tf.random_gamma(shape, alpha=1, beta=1. / rate, dtype=dtype, seed=seed)