Python tensorflow.floordiv() Examples
The following are 30
code examples of tensorflow.floordiv().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: discretization.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def int_to_bit(x_int, num_bits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor. Args: x_int: Tensor containing integer to be converted into base notation. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Corresponding number expressed in base. """ x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1)) x_labels = [] for i in range(num_bits): x_labels.append( tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base))) res = tf.concat(x_labels, axis=-1) return tf.to_float(res)
Example #2
Source File: feedback.py From sequencing with MIT License | 6 votes |
def sample(self, logits, time): rl_time_steps = tf.floordiv(tf.maximum(self.global_step_tensor - self.burn_in_step, 0), self.increment_step) start_rl_step = self.sequence_length - rl_time_steps next_input_ids = tf.cond( tf.greater_equal(time, self.max_sequence_length), lambda: tf.tile([self.eos_id], [self.batch_size]), lambda: self._input_tas.read(time)) next_predicted_ids = tf.squeeze(tf.multinomial(logits, 1), axis=[-1]) mask = tf.to_int32(time >= start_rl_step) return (1 - mask) * tf.to_int32(next_input_ids) + mask * tf.to_int32( next_predicted_ids)
Example #3
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _testBCastByFunc(self, funcs, xs, ys): dtypes = [ np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128, ] for dtype in dtypes: for (np_func, tf_func) in funcs: if (dtype in (np.complex64, np.complex128) and tf_func in (_FLOORDIV, tf.floordiv)): continue # floordiv makes no sense for complex numbers self._compareBCast(xs, ys, dtype, np_func, tf_func) self._compareBCast(ys, xs, dtype, np_func, tf_func)
Example #4
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _compareBCast(self, xs, ys, dtype, np_func, tf_func): if dtype in (np.complex64, np.complex128): x = (1 + np.linspace(0, 2 + 3j, np.prod(xs))).astype(dtype).reshape(xs) y = (1 + np.linspace(0, 2 - 2j, np.prod(ys))).astype(dtype).reshape(ys) else: x = (1 + np.linspace(0, 5, np.prod(xs))).astype(dtype).reshape(xs) y = (1 + np.linspace(0, 5, np.prod(ys))).astype(dtype).reshape(ys) self._compareCpu(x, y, np_func, tf_func) if x.dtype in (np.float16, np.float32, np.float64, np.complex64, np.complex128): if tf_func not in (_FLOORDIV, tf.floordiv): if x.dtype == np.float16: # Compare fp16 theoretical gradients to fp32 numerical gradients, # since fp16 numerical gradients are too imprecise unless great # care is taken with choosing the inputs and the delta. This is # a weaker check (in particular, it does not test the op itself, # only its gradient), but it's much better than nothing. self._compareGradientX(x, y, np_func, tf_func, np.float) self._compareGradientY(x, y, np_func, tf_func, np.float) else: self._compareGradientX(x, y, np_func, tf_func) self._compareGradientY(x, y, np_func, tf_func) self._compareGpu(x, y, np_func, tf_func) # TODO(josh11b,vrv): Refactor this to use parameterized tests.
Example #5
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testInt32Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) # _compareBoth tests on GPU only for floating point types, so test # _MOD for int32 on GPU by calling _compareGpu self._compareGpu(x, y, np.mod, _MOD)
Example #6
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDoubleBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example #7
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testFloatBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) # Need x > 1 self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta) n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example #8
Source File: preprocessing.py From Real-time-self-adaptive-deep-stereo with Apache License 2.0 | 6 votes |
def pad_image(immy,down_factor = 256,dynamic=False): """ pad image with a proper number of 0 to prevent problem when concatenating after upconv Args: immy: metaop that produces an image down_factor: downgrade resolution that should be respected before feeding the image to the network dynamic: if dynamic is True use dynamic shape of immy, otherway use static shape """ if dynamic: immy_shape = tf.shape(immy) new_height = tf.where(tf.equal(immy_shape[-3]%down_factor,0),x=immy_shape[-3],y=(tf.floordiv(immy_shape[-3],down_factor)+1)*down_factor) new_width = tf.where(tf.equal(immy_shape[-2]%down_factor,0),x=immy_shape[-2],y=(tf.floordiv(immy_shape[-2],down_factor)+1)*down_factor) else: immy_shape = immy.get_shape().as_list() new_height = immy_shape[-3] if immy_shape[-3]%down_factor==0 else ((immy_shape[-3]//down_factor)+1)*down_factor new_width = immy_shape[-2] if immy_shape[-2]%down_factor==0 else ((immy_shape[-2]//down_factor)+1)*down_factor pad_height_left = (new_height-immy_shape[-3])//2 pad_height_right = (new_height-immy_shape[-3]+1)//2 pad_width_left = (new_width-immy_shape[-2])//2 pad_width_right = (new_width-immy_shape[-2]+1)//2 immy = tf.pad(immy,[[0,0],[pad_height_left,pad_height_right],[pad_width_left,pad_width_right],[0,0]],mode="REFLECT") return immy
Example #9
Source File: discretization.py From acai with Apache License 2.0 | 6 votes |
def int_to_bit(self, x_int, num_bits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor. Args: x_int: Tensor containing integer to be converted into base notation. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Corresponding number expressed in base. """ x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1)) x_labels = [] for i in range(num_bits): x_labels.append( tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base) ** i), tf.to_int32(base))) res = tf.concat(x_labels, axis=-1) return tf.to_float(res)
Example #10
Source File: vq_discrete.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def int_to_bit(self, x_int, num_bits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor. Args: x_int: Tensor containing integer to be converted into base notation. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Corresponding number expressed in base. """ x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1)) x_labels = [] for i in range(num_bits): x_labels.append( tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base))) res = tf.concat(x_labels, axis=-1) return tf.to_float(res)
Example #11
Source File: ops.py From listen-attend-and-spell with Apache License 2.0 | 6 votes |
def pyramidal_stack(outputs, sequence_length): shape = tf.shape(outputs) batch_size, max_time = shape[0], shape[1] num_units = outputs.get_shape().as_list()[-1] paddings = [[0, 0], [0, tf.floormod(max_time, 2)], [0, 0]] outputs = tf.pad(outputs, paddings) ''' even_time = outputs[:, ::2, :] odd_time = outputs[:, 1::2, :] concat_outputs = tf.concat([even_time, odd_time], -1) ''' concat_outputs = tf.reshape(outputs, (batch_size, -1, num_units * 2)) return concat_outputs, tf.floordiv(sequence_length, 2) + tf.floormod(sequence_length, 2)
Example #12
Source File: discretization.py From BERT with Apache License 2.0 | 6 votes |
def int_to_bit(x_int, num_bits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor. Args: x_int: Tensor containing integer to be converted into base notation. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Corresponding number expressed in base. """ x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1)) x_labels = [tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base)) for i in range(num_bits)] res = tf.concat(x_labels, axis=-1) return tf.to_float(res)
Example #13
Source File: vq_discrete.py From BERT with Apache License 2.0 | 6 votes |
def int_to_bit(self, x_int, num_bits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor. Args: x_int: Tensor containing integer to be converted into base notation. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Corresponding number expressed in base. """ x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1)) # pylint: disable=g-complex-comprehension x_labels = [ tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base)) for i in range(num_bits)] res = tf.concat(x_labels, axis=-1) return tf.to_float(res)
Example #14
Source File: preprocessing.py From Learning2AdaptForStereo with Apache License 2.0 | 6 votes |
def pad_image(immy,down_factor = 256,dynamic=False): """ pad image with a proper number of 0 to prevent problem when concatenating after upconv Args: immy: metaop that produces an image down_factor: downgrade resolution that should be respected before feeding the image to the network dynamic: if dynamic is True use dynamic shape of immy, otherway use static shape """ if dynamic: immy_shape = tf.shape(immy) new_height = tf.where(tf.equal(immy_shape[-3]%down_factor,0),x=immy_shape[-3],y=(tf.floordiv(immy_shape[-3],down_factor)+1)*down_factor) new_width = tf.where(tf.equal(immy_shape[-2]%down_factor,0),x=immy_shape[-2],y=(tf.floordiv(immy_shape[-2],down_factor)+1)*down_factor) else: immy_shape = immy.get_shape().as_list() new_height = immy_shape[-3] if immy_shape[-3]%down_factor==0 else ((immy_shape[-3]//down_factor)+1)*down_factor new_width = immy_shape[-2] if immy_shape[-2]%down_factor==0 else ((immy_shape[-2]//down_factor)+1)*down_factor pad_height_left = (new_height-immy_shape[-3])//2 pad_height_right = (new_height-immy_shape[-3]+1)//2 pad_width_left = (new_width-immy_shape[-2])//2 pad_width_right = (new_width-immy_shape[-2]+1)//2 immy = tf.pad(immy,[[0,0],[pad_height_left,pad_height_right],[pad_width_left,pad_width_right],[0,0]],mode="REFLECT") return immy
Example #15
Source File: discretization.py From fine-lm with MIT License | 6 votes |
def int_to_bit(x_int, num_bits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor. Args: x_int: Tensor containing integer to be converted into base notation. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Corresponding number expressed in base. """ x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1)) x_labels = [] for i in range(num_bits): x_labels.append( tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base))) res = tf.concat(x_labels, axis=-1) return tf.to_float(res)
Example #16
Source File: tensorflow_backend.py From keras-contrib with MIT License | 5 votes |
def extract_image_patches(x, ksizes, ssizes, padding='same', data_format='channels_last'): """Extract the patches from an image. # Arguments x: The input image ksizes: 2-d tuple with the kernel size ssizes: 2-d tuple with the strides size padding: 'same' or 'valid' data_format: 'channels_last' or 'channels_first' # Returns The (k_w,k_h) patches extracted TF ==> (batch_size,w,h,k_w,k_h,c) TH ==> (batch_size,w,h,c,k_w,k_h) """ kernel = [1, ksizes[0], ksizes[1], 1] strides = [1, ssizes[0], ssizes[1], 1] padding = _preprocess_padding(padding) if data_format == 'channels_first': x = K.permute_dimensions(x, (0, 2, 3, 1)) bs_i, w_i, h_i, ch_i = K.int_shape(x) patches = tf.extract_image_patches(x, kernel, strides, [1, 1, 1, 1], padding) # Reshaping to fit Theano bs, w, h, ch = K.int_shape(patches) reshaped = tf.reshape(patches, [-1, w, h, tf.floordiv(ch, ch_i), ch_i]) final_shape = [-1, w, h, ch_i, ksizes[0], ksizes[1]] patches = tf.reshape(tf.transpose(reshaped, [0, 1, 2, 4, 3]), final_shape) if data_format == 'channels_last': patches = K.permute_dimensions(patches, [0, 1, 2, 4, 5, 3]) return patches
Example #17
Source File: model.py From mac-network with Apache License 2.0 | 5 votes |
def initTowerBatch(self, towerI, towersNum, dataSize): towerBatchSize = tf.floordiv(dataSize, towersNum) start = towerI * towerBatchSize end = (towerI + 1) * towerBatchSize if towerI < towersNum - 1 else dataSize self.questionsIndices = self.questionsIndicesAll[start:end] self.questionLengths = self.questionLengthsAll[start:end] self.images = self.imagesAll[start:end] self.answersIndices = self.answersIndicesAll[start:end] self.batchSize = end - start
Example #18
Source File: ops.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def fpn_feature_levels(num_levels, unit_scale_index, image_ratio, boxes): """Returns fpn feature level for each box based on its area. See section 4.2 of https://arxiv.org/pdf/1612.03144.pdf for details. Args: num_levels: An integer indicating the number of feature levels to crop boxes from. unit_scale_index: An 0-based integer indicating the index of feature map which most closely matches the resolution of the pretrained model. image_ratio: A float indicating the ratio of input image area to pretraining image area. boxes: A float tensor of shape [batch, num_boxes, 4] containing boxes of the form [ymin, xmin, ymax, xmax] in normalized coordinates. Returns: An int32 tensor of shape [batch_size, num_boxes] containing feature indices. """ assert num_levels > 0, ( '`num_levels` must be > 0. Found {}'.format(num_levels)) assert unit_scale_index < num_levels and unit_scale_index >= 0, ( '`unit_scale_index` must be in [0, {}). Found {}.'.format( num_levels, unit_scale_index)) box_height_width = boxes[:, :, 2:4] - boxes[:, :, 0:2] areas_sqrt = tf.sqrt(tf.reduce_prod(box_height_width, axis=2)) log_2 = tf.cast(tf.log(2.0), dtype=boxes.dtype) levels = tf.cast( tf.floordiv(tf.log(areas_sqrt * image_ratio), log_2) + unit_scale_index, dtype=tf.int32) levels = tf.maximum(0, tf.minimum(num_levels - 1, levels)) return levels
Example #19
Source File: model.py From lcgn with BSD 2-Clause "Simplified" License | 5 votes |
def init_tower_batch(self, towerI, towersNum, dataSize): towerBatchSize = tf.floordiv(dataSize, towersNum) start = towerI * towerBatchSize end = (towerI+1)*towerBatchSize if towerI < towersNum-1 else dataSize self.questionIndices = self.questionIndicesAll[start:end] self.questionLengths = self.questionLengthsAll[start:end] self.images = self.imagesAll[start:end] self.imagesObjectNum = self.imagesObjectNumAll[start:end] if cfg.BUILD_VQA: self.answerIndices = self.answerIndicesAll[start:end] if cfg.BUILD_REF: self.bboxIndGt = self.bboxIndGtAll[start:end] self.bboxOffsetGt = self.bboxOffsetGtAll[start:end] self.batchSize = end - start
Example #20
Source File: model.py From lcgn with BSD 2-Clause "Simplified" License | 5 votes |
def init_tower_batch(self, towerI, towersNum, dataSize): towerBatchSize = tf.floordiv(dataSize, towersNum) start = towerI * towerBatchSize end = (towerI+1)*towerBatchSize if towerI < towersNum-1 else dataSize self.questionIndices = self.questionIndicesAll[start:end] self.questionLengths = self.questionLengthsAll[start:end] self.images = self.imagesAll[start:end] self.imagesObjectNum = self.imagesObjectNumAll[start:end] self.answerIndices = self.answerIndicesAll[start:end] self.batchSize = end - start
Example #21
Source File: seq2seq_helpers.py From DeepDeepParser with Apache License 2.0 | 5 votes |
def gather_forced_att_logits(encoder_input_symbols, encoder_decoder_vocab_map, att_logit, batch_size, attn_length, target_vocab_size): """Gathers attention weights as logits for forced attention.""" flat_input_symbols = tf.reshape(encoder_input_symbols, [-1]) flat_label_symbols = tf.gather(encoder_decoder_vocab_map, flat_input_symbols) flat_att_logits = tf.reshape(att_logit, [-1]) flat_range = tf.to_int64(tf.range(tf.shape(flat_label_symbols)[0])) batch_inds = tf.floordiv(flat_range, attn_length) position_inds = tf.mod(flat_range, attn_length) attn_vocab_inds = tf.transpose(tf.pack( [batch_inds, position_inds, tf.to_int64(flat_label_symbols)])) # Exclude indexes of entries with flat_label_symbols[i] = -1. included_flat_indexes = tf.reshape(tf.where(tf.not_equal( flat_label_symbols, -1)), [-1]) included_attn_vocab_inds = tf.gather(attn_vocab_inds, included_flat_indexes) included_flat_att_logits = tf.gather(flat_att_logits, included_flat_indexes) sparse_shape = tf.to_int64(tf.pack( [batch_size, attn_length, target_vocab_size])) sparse_label_logits = tf.SparseTensor(included_attn_vocab_inds, included_flat_att_logits, sparse_shape) forced_att_logit_sum = tf.sparse_reduce_sum(sparse_label_logits, [1]) forced_att_logit = tf.reshape(forced_att_logit_sum, [-1, target_vocab_size]) return forced_att_logit
Example #22
Source File: det_tools.py From hfnet with MIT License | 5 votes |
def extract_xy_coords(d_heatmaps, block_size): batch = tf.shape(d_heatmaps)[0] rheight = tf.shape(d_heatmaps)[1] rwidth = tf.shape(d_heatmaps)[2] width = rwidth * block_size height = rheight * block_size d_argmax = tf.cast(tf.argmax(d_heatmaps, axis=-1), dtype=tf.int32) fgmask = tf.cast(tf.not_equal(d_argmax, block_size**2), dtype=tf.int32) x_bcoords = tf.mod(d_argmax, block_size) y_bcoords = tf.floordiv(d_argmax, block_size) # floor_div ? zero = tf.constant(0, dtype=tf.int32) zeros = tf.zeros_like(x_bcoords) x_bcoords = tf.where(tf.equal(fgmask, zero), zeros, x_bcoords) y_bcoords = tf.where(tf.equal(fgmask, zero), zeros, y_bcoords) x_offset, y_offset = tf.meshgrid(tf.range(0, width, block_size), tf.range(0, height, block_size)) x_offset = tf.tile(tf.expand_dims(x_offset, axis=0), [batch, 1, 1]) y_offset = tf.tile(tf.expand_dims(y_offset, axis=0), [batch, 1, 1]) x_icoords = x_bcoords + x_offset y_icoords = y_bcoords + y_offset return x_icoords, y_icoords, fgmask
Example #23
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testOverload(self): dtypes = [ tf.float16, tf.float32, tf.float64, tf.int32, tf.int64, tf.complex64, tf.complex128, ] funcs = [ (np.add, _ADD), (np.subtract, _SUB), (np.multiply, _MUL), (np.power, _POW), (np.true_divide, _TRUEDIV), (np.floor_divide, _FLOORDIV), ] for dtype in dtypes: for np_func, tf_func in funcs: if dtype in (tf.complex64, tf.complex128) and tf_func == _FLOORDIV: continue # floordiv makes no sense for complex self._compareBinary(10, 5, dtype, np_func, tf_func) # Mod only works for int32 and int64. for dtype in [tf.int32, tf.int64]: self._compareBinary(10, 3, dtype, np.mod, _MOD)
Example #24
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def _testBCastD(self, xs, ys): funcs = [ (np.true_divide, tf.truediv), (np.floor_divide, tf.floordiv), (np.true_divide, _TRUEDIV), (np.floor_divide, _FLOORDIV), ] self._testBCastByFunc(funcs, xs, ys)
Example #25
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testUint16Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.uint16) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.uint16) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV)
Example #26
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def _compareBoth(self, x, y, np_func, tf_func, also_compare_variables=False): self._compareCpu(x, y, np_func, tf_func, also_compare_variables) if x.dtype in (np.float16, np.float32, np.float64): if tf_func not in (_FLOORDIV, tf.floordiv, tf.igamma, tf.igammac, tf.zeta, tf.polygamma): self._compareGradientX(x, y, np_func, tf_func) self._compareGradientY(x, y, np_func, tf_func) if tf_func in (tf.igamma, tf.igammac, tf.zeta, tf.polygamma): # These methods only support gradients in the second parameter self._compareGradientY(x, y, np_func, tf_func) self._compareGpu(x, y, np_func, tf_func)
Example #27
Source File: swa_train_cpn.py From tf.fashionAI with Apache License 2.0 | 5 votes |
def get_keypoint(image, targets, predictions, heatmap_size, height, width, category, clip_at_zero=True, data_format='channels_last', name=None): predictions = tf.reshape(predictions, [1, -1, heatmap_size*heatmap_size]) pred_max = tf.reduce_max(predictions, axis=-1) pred_indices = tf.argmax(predictions, axis=-1) pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32) width, height = tf.cast(width, tf.float32), tf.cast(height, tf.float32) pred_x, pred_y = pred_x * width / tf.cast(heatmap_size, tf.float32), pred_y * height / tf.cast(heatmap_size, tf.float32) if clip_at_zero: pred_x, pred_y = pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32) pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.) pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.) if config.PRED_DEBUG: pred_indices_ = tf.squeeze(pred_indices) image_ = tf.squeeze(image) * 255. pred_heatmap = tf.one_hot(pred_indices_, heatmap_size*heatmap_size, on_value=1., off_value=0., axis=-1, dtype=tf.float32) pred_heatmap = tf.reshape(pred_heatmap, [-1, heatmap_size, heatmap_size]) if data_format == 'channels_first': image_ = tf.transpose(image_, perm=(1, 2, 0)) save_image_op = tf.py_func(save_image_with_heatmap, [image_, height, width, heatmap_size, tf.reshape(pred_heatmap * 255., [-1, heatmap_size, heatmap_size]), tf.reshape(predictions, [-1, heatmap_size, heatmap_size]), config.left_right_group_map[category][0], config.left_right_group_map[category][1], config.left_right_group_map[category][2]], tf.int64, stateful=True) with tf.control_dependencies([save_image_op]): pred_x, pred_y = pred_x * 1., pred_y * 1. return pred_x, pred_y
Example #28
Source File: keras_contrib_backend.py From se_relativisticgan with MIT License | 5 votes |
def extract_image_patches(x, ksizes, ssizes, padding='same', data_format='channels_last'): ''' Extract the patches from an image # Parameters x : The input image ksizes : 2-d tuple with the kernel size ssizes : 2-d tuple with the strides size padding : 'same' or 'valid' data_format : 'channels_last' or 'channels_first' # Returns The (k_w,k_h) patches extracted TF ==> (batch_size,w,h,k_w,k_h,c) TH ==> (batch_size,w,h,c,k_w,k_h) ''' kernel = [1, ksizes[0], ksizes[1], 1] strides = [1, ssizes[0], ssizes[1], 1] padding = _preprocess_padding(padding) if data_format == 'channels_first': x = KTF.permute_dimensions(x, (0, 2, 3, 1)) bs_i, w_i, h_i, ch_i = KTF.int_shape(x) patches = tf.extract_image_patches(x, kernel, strides, [1, 1, 1, 1], padding) # Reshaping to fit Theano bs, w, h, ch = KTF.int_shape(patches) patches = tf.reshape(tf.transpose(tf.reshape(patches, [-1, w, h, tf.floordiv(ch, ch_i), ch_i]), [0, 1, 2, 4, 3]), [-1, w, h, ch_i, ksizes[0], ksizes[1]]) if data_format == 'channels_last': patches = KTF.permute_dimensions(patches, [0, 1, 2, 4, 5, 3]) return patches
Example #29
Source File: preprocessing.py From finetune_classification with Apache License 2.0 | 5 votes |
def _border_expand(image, mode='CONSTANT', constant_values=255): """Expands the given image. Args: Args: image: A 3-D image `Tensor`. output_height: The height of the image after Expanding. output_width: The width of the image after Expanding. resize: A boolean indicating whether to resize the expanded image to [output_height, output_width, channels] or not. Returns: expanded_image: A 3-D tensor containing the resized image. """ shape = tf.shape(image) height = shape[0] width = shape[1] def _pad_left_right(): pad_left = tf.floordiv(height - width, 2) pad_right = height - width - pad_left return [[0, 0], [pad_left, pad_right], [0, 0]] def _pad_top_bottom(): pad_top = tf.floordiv(width - height, 2) pad_bottom = width - height - pad_top return [[pad_top, pad_bottom], [0, 0], [0, 0]] paddings = tf.cond(tf.greater(height, width), _pad_left_right, _pad_top_bottom) expanded_image = tf.pad(image, paddings, mode=mode, constant_values=constant_values) return expanded_image
Example #30
Source File: ops.py From tfdeploy with MIT License | 5 votes |
def test_FloorDiv(self): t = tf.floordiv(*self.random((3, 5), (3, 5))) self.check(t)