Python tensorflow.report_uninitialized_variables() Examples
The following are 30
code examples of tensorflow.report_uninitialized_variables().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: ssd_meta_arch_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 6 votes |
def test_restore_map_for_detection_ckpt(self): model, _, _, _ = self._create_model() model.predict(tf.constant(np.array([[[0, 0], [1, 1]], [[1, 0], [0, 1]]], dtype=np.float32)), true_image_shapes=None) init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) var_map = model.restore_map( fine_tune_checkpoint_type='detection', load_all_detection_checkpoint_vars=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var)
Example #2
Source File: ssd_meta_arch_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def test_restore_map_for_detection_ckpt(self): model, _, _, _ = self._create_model() model.predict(tf.constant(np.array([[[0, 0], [1, 1]], [[1, 0], [0, 1]]], dtype=np.float32)), true_image_shapes=None) init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) var_map = model.restore_map( fine_tune_checkpoint_type='detection', load_all_detection_checkpoint_vars=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var)
Example #3
Source File: ssd_meta_arch_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def test_restore_map_for_detection_ckpt(self): model, _, _, _ = self._create_model() model.predict(tf.constant(np.array([[[[0, 0], [1, 1]], [[1, 0], [0, 1]]]], dtype=np.float32)), true_image_shapes=None) init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) var_map = model.restore_map( fine_tune_checkpoint_type='detection', load_all_detection_checkpoint_vars=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var)
Example #4
Source File: session_manager_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testWaitForSessionWithReadyForLocalInitOpFailsToReadyLocal(self): with tf.Graph().as_default() as graph: v = tf.Variable(1, name="v") w = tf.Variable( v, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES], name="w") sm = tf.train.SessionManager( graph=graph, ready_op=tf.report_uninitialized_variables(), ready_for_local_init_op=tf.report_uninitialized_variables(), local_init_op=w.initializer) with self.assertRaises(tf.errors.DeadlineExceededError): # Time-out because w fails to be initialized, # because of overly restrictive ready_for_local_init_op sm.wait_for_session("", max_wait_secs=3)
Example #5
Source File: session_manager_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testWaitForSessionInsufficientReadyForLocalInitCheck(self): with tf.Graph().as_default() as graph: v = tf.Variable(1, name="v") w = tf.Variable( v, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES], name="w") sm = tf.train.SessionManager( graph=graph, ready_op=tf.report_uninitialized_variables(), ready_for_local_init_op=None, local_init_op=w.initializer) with self.assertRaisesRegexp(tf.errors.FailedPreconditionError, "Attempting to use uninitialized value v"): sm.wait_for_session("", max_wait_secs=3)
Example #6
Source File: ssd_meta_arch_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def test_restore_map_for_detection_ckpt(self): model, _, _, _ = self._create_model() model.predict(tf.constant(np.array([[[0, 0], [1, 1]], [[1, 0], [0, 1]]], dtype=np.float32)), true_image_shapes=None) init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) var_map = model.restore_map( from_detection_checkpoint=True, load_all_detection_checkpoint_vars=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var)
Example #7
Source File: session_manager_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testPrepareSessionDidNotInitLocalVariable(self): with tf.Graph().as_default(): v = tf.Variable(1, name="v") w = tf.Variable( v, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES], name="w") with self.test_session(): self.assertEqual(False, tf.is_variable_initialized(v).eval()) self.assertEqual(False, tf.is_variable_initialized(w).eval()) sm2 = tf.train.SessionManager( ready_op=tf.report_uninitialized_variables()) with self.assertRaisesRegexp(RuntimeError, "Init operations did not make model ready"): sm2.prepare_session("", init_op=v.initializer)
Example #8
Source File: ssd_meta_arch_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def test_restore_map_for_detection_ckpt(self, use_keras): model, _, _, _ = self._create_model(use_keras=use_keras) model.predict(tf.constant(np.array([[[[0, 0], [1, 1]], [[1, 0], [0, 1]]]], dtype=np.float32)), true_image_shapes=None) init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) var_map = model.restore_map( fine_tune_checkpoint_type='detection', load_all_detection_checkpoint_vars=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var)
Example #9
Source File: session_manager_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testPrepareSessionWithReadyNotReadyForLocal(self): with tf.Graph().as_default(): v = tf.Variable(1, name="v") w = tf.Variable( v, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES], name="w") with self.test_session(): self.assertEqual(False, tf.is_variable_initialized(v).eval()) self.assertEqual(False, tf.is_variable_initialized(w).eval()) sm2 = tf.train.SessionManager( ready_op=tf.report_uninitialized_variables(), ready_for_local_init_op=tf.report_uninitialized_variables( tf.all_variables()), local_init_op=w.initializer) with self.assertRaisesRegexp( RuntimeError, "Init operations did not make model ready for local_init"): sm2.prepare_session("", init_op=None)
Example #10
Source File: ssd_meta_arch_test.py From ros_tensorflow with Apache License 2.0 | 6 votes |
def test_restore_map_for_detection_ckpt(self): model, _, _, _ = self._create_model() model.predict(tf.constant(np.array([[[0, 0], [1, 1]], [[1, 0], [0, 1]]], dtype=np.float32)), true_image_shapes=None) init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) var_map = model.restore_map( fine_tune_checkpoint_type='detection', load_all_detection_checkpoint_vars=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var)
Example #11
Source File: faster_rcnn_meta_arch_test_lib.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_restore_map_for_detection_ckpt(self): # Define first detection graph and save variables. test_graph_detection1 = tf.Graph() with test_graph_detection1.as_default(): model = self._build_model( is_training=False, first_stage_only=False, second_stage_batch_size=6) inputs_shape = (2, 20, 20, 3) inputs = tf.to_float(tf.random_uniform( inputs_shape, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs = model.preprocess(inputs) prediction_dict = model.predict(preprocessed_inputs) model.postprocess(prediction_dict) init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) # Define second detection graph and restore variables. test_graph_detection2 = tf.Graph() with test_graph_detection2.as_default(): model2 = self._build_model(is_training=False, first_stage_only=False, second_stage_batch_size=6, num_classes=42) inputs_shape2 = (2, 20, 20, 3) inputs2 = tf.to_float(tf.random_uniform( inputs_shape2, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs2 = model2.preprocess(inputs2) prediction_dict2 = model2.predict(preprocessed_inputs2) model2.postprocess(prediction_dict2) var_map = model2.restore_map(from_detection_checkpoint=True) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) with self.test_session() as sess: saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn(model2.first_stage_feature_extractor_scope, var.name) self.assertNotIn(model2.second_stage_feature_extractor_scope, var.name)
Example #12
Source File: session_manager_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testRecoverSessionNoChkptStillRunsLocalInitOp(self): # This test checks for backwards compatibility. # In particular, we continue to ensure that recover_session will execute # local_init_op exactly once, regardless of whether the session was # successfully recovered. with tf.Graph().as_default(): w = tf.Variable( 1, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES], name="w") with self.test_session(): self.assertEqual(False, tf.is_variable_initialized(w).eval()) sm2 = tf.train.SessionManager( ready_op=tf.report_uninitialized_variables(), ready_for_local_init_op=None, local_init_op=w.initializer) # Try to recover session from None sess, initialized = sm2.recover_session( "", saver=None, checkpoint_dir=None) # Succeeds because recover_session still run local_init_op self.assertFalse(initialized) self.assertEqual( True, tf.is_variable_initialized(sess.graph.get_tensor_by_name("w:0")).eval( session=sess)) self.assertEquals(1, sess.run(w))
Example #13
Source File: session_manager_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testInitWithNoneLocalInitOpError(self): # Creating a SessionManager with a None local_init_op but # non-None ready_for_local_init_op raises ValueError with self.assertRaisesRegexp(ValueError, "If you pass a ready_for_local_init_op " "you must also pass a local_init_op "): tf.train.SessionManager( ready_for_local_init_op=tf.report_uninitialized_variables( tf.all_variables()), local_init_op=None)
Example #14
Source File: session_manager_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testRecoverSession(self): # Create a checkpoint. checkpoint_dir = os.path.join(self.get_temp_dir(), "recover_session") try: gfile.DeleteRecursively(checkpoint_dir) except errors.OpError: pass # Ignore gfile.MakeDirs(checkpoint_dir) with tf.Graph().as_default(): v = tf.Variable(1, name="v") sm = tf.train.SessionManager(ready_op=tf.report_uninitialized_variables()) saver = tf.train.Saver({"v": v}) sess, initialized = sm.recover_session("", saver=saver, checkpoint_dir=checkpoint_dir) self.assertFalse(initialized) sess.run(v.initializer) self.assertEquals(1, sess.run(v)) saver.save(sess, os.path.join(checkpoint_dir, "recover_session_checkpoint")) # Create a new Graph and SessionManager and recover. with tf.Graph().as_default(): v = tf.Variable(2, name="v") with self.test_session(): self.assertEqual(False, tf.is_variable_initialized(v).eval()) sm2 = tf.train.SessionManager( ready_op=tf.report_uninitialized_variables()) saver = tf.train.Saver({"v": v}) sess, initialized = sm2.recover_session("", saver=saver, checkpoint_dir=checkpoint_dir) self.assertTrue(initialized) self.assertEqual( True, tf.is_variable_initialized( sess.graph.get_tensor_by_name("v:0")).eval(session=sess)) self.assertEquals(1, sess.run(v))
Example #15
Source File: session_manager_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testPrepareSessionWithReadyForLocalInitOp(self): with tf.Graph().as_default(): v = tf.Variable(1, name="v") w = tf.Variable( v, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES], name="w") with self.test_session(): self.assertEqual(False, tf.is_variable_initialized(v).eval()) self.assertEqual(False, tf.is_variable_initialized(w).eval()) sm2 = tf.train.SessionManager( ready_op=tf.report_uninitialized_variables(), ready_for_local_init_op=tf.report_uninitialized_variables( tf.all_variables()), local_init_op=w.initializer) sess = sm2.prepare_session("", init_op=v.initializer) self.assertEqual( True, tf.is_variable_initialized(sess.graph.get_tensor_by_name("v:0")).eval( session=sess)) self.assertEqual( True, tf.is_variable_initialized(sess.graph.get_tensor_by_name("w:0")).eval( session=sess)) self.assertEquals(1, sess.run(v)) self.assertEquals(1, sess.run(w))
Example #16
Source File: __init__.py From BERT-keras with GNU General Public License v3.0 | 5 votes |
def tpu_compatible(): '''Fit the tpu problems we meet while using keras tpu model''' if not hasattr(tpu_compatible, 'once'): tpu_compatible.once = True else: return import tensorflow as tf import tensorflow.keras.backend as K _version = tf.__version__.split('.') is_correct_version = int(_version[0]) >= 1 and (int(_version[0]) >= 2 or int(_version[1]) >= 13) from tensorflow.contrib.tpu.python.tpu.keras_support import KerasTPUModel def initialize_uninitialized_variables(): sess = K.get_session() uninitialized_variables = set([i.decode('ascii') for i in sess.run(tf.report_uninitialized_variables())]) init_op = tf.variables_initializer( [v for v in tf.global_variables() if v.name.split(':')[0] in uninitialized_variables] ) sess.run(init_op) _tpu_compile = KerasTPUModel.compile def tpu_compile(self, optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None, **kwargs): if not is_correct_version: raise ValueError('You need tensorflow >= 1.3 for better keras tpu support!') _tpu_compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, **kwargs) initialize_uninitialized_variables() # for unknown reason, we should run this after compile sometimes KerasTPUModel.compile = tpu_compile
Example #17
Source File: faster_rcnn_meta_arch_test_lib.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def test_restore_map_for_classification_ckpt(self): # Define mock tensorflow classification graph and save variables. test_graph_classification = tf.Graph() with test_graph_classification.as_default(): image = tf.placeholder(dtype=tf.float32, shape=[1, 20, 20, 3]) with tf.variable_scope('mock_model'): net = slim.conv2d(image, num_outputs=3, kernel_size=1, scope='layer1') slim.conv2d(net, num_outputs=3, kernel_size=1, scope='layer2') init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session(graph=test_graph_classification) as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) # Create tensorflow detection graph and load variables from # classification checkpoint. test_graph_detection = tf.Graph() with test_graph_detection.as_default(): model = self._build_model( is_training=False, number_of_stages=2, second_stage_batch_size=6) inputs_shape = (2, 20, 20, 3) inputs = tf.to_float(tf.random_uniform( inputs_shape, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs, true_image_shapes = model.preprocess(inputs) prediction_dict = model.predict(preprocessed_inputs, true_image_shapes) model.postprocess(prediction_dict, true_image_shapes) var_map = model.restore_map(fine_tune_checkpoint_type='classification') self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) with self.test_session(graph=test_graph_classification) as sess: saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn(model.first_stage_feature_extractor_scope, var) self.assertNotIn(model.second_stage_feature_extractor_scope, var)
Example #18
Source File: faster_rcnn_meta_arch_test_lib.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_restore_map_for_classification_ckpt(self): # Define mock tensorflow classification graph and save variables. test_graph_classification = tf.Graph() with test_graph_classification.as_default(): image = tf.placeholder(dtype=tf.float32, shape=[1, 20, 20, 3]) with tf.variable_scope('mock_model'): net = slim.conv2d(image, num_outputs=3, kernel_size=1, scope='layer1') slim.conv2d(net, num_outputs=3, kernel_size=1, scope='layer2') init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session(graph=test_graph_classification) as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) # Create tensorflow detection graph and load variables from # classification checkpoint. test_graph_detection = tf.Graph() with test_graph_detection.as_default(): model = self._build_model( is_training=False, number_of_stages=2, second_stage_batch_size=6) inputs_shape = (2, 20, 20, 3) inputs = tf.to_float(tf.random_uniform( inputs_shape, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs, true_image_shapes = model.preprocess(inputs) prediction_dict = model.predict(preprocessed_inputs, true_image_shapes) model.postprocess(prediction_dict, true_image_shapes) var_map = model.restore_map(fine_tune_checkpoint_type='classification') self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) with self.test_session(graph=test_graph_classification) as sess: saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn(model.first_stage_feature_extractor_scope, var) self.assertNotIn(model.second_stage_feature_extractor_scope, var)
Example #19
Source File: ssd_meta_arch_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_restore_map_for_classification_ckpt(self): # Define mock tensorflow classification graph and save variables. test_graph_classification = tf.Graph() with test_graph_classification.as_default(): image = tf.placeholder(dtype=tf.float32, shape=[1, 20, 20, 3]) with tf.variable_scope('mock_model'): net = slim.conv2d(image, num_outputs=32, kernel_size=1, scope='layer1') slim.conv2d(net, num_outputs=3, kernel_size=1, scope='layer2') init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session(graph=test_graph_classification) as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) # Create tensorflow detection graph and load variables from # classification checkpoint. test_graph_detection = tf.Graph() with test_graph_detection.as_default(): model, _, _, _ = self._create_model() inputs_shape = [2, 2, 2, 3] inputs = tf.to_float(tf.random_uniform( inputs_shape, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs, true_image_shapes = model.preprocess(inputs) prediction_dict = model.predict(preprocessed_inputs, true_image_shapes) model.postprocess(prediction_dict, true_image_shapes) another_variable = tf.Variable([17.0], name='another_variable') # pylint: disable=unused-variable var_map = model.restore_map(fine_tune_checkpoint_type='classification') self.assertNotIn('another_variable', var_map) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) with self.test_session(graph=test_graph_detection) as sess: saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var)
Example #20
Source File: mnist_cifar_models.py From CROWN-IBP with BSD 2-Clause "Simplified" License | 5 votes |
def get_gradient(self, data, sess = None): if sess is None: sess = K.get_session() # initialize all un initialized variables # sess.run(tf.variables_initializer([v for v in tf.global_variables() if v.name.split(':')[0] in set(sess.run(tf.report_uninitialized_variables()))])) evaluated_gradients = [] for g in self.gradients: evaluated_gradients.append(sess.run(g, feed_dict={self.model.input:data})) return evaluated_gradients
Example #21
Source File: DeeProtein.py From AiGEM_TeamHeidelberg2017 with MIT License | 5 votes |
def guarantee_initialized_variables(self, session, list_of_variables=None): if list_of_variables is None: list_of_variables = tf.all_variables() uninitialized_variables = list(tf.get_variable(name) for name in session.run(tf.report_uninitialized_variables(list_of_variables))) session.run(tf.initialize_variables(uninitialized_variables)) return uninitialized_variables
Example #22
Source File: nn_model.py From FATE with Apache License 2.0 | 5 votes |
def _initialize_variables(self): uninitialized_var_names = [bytes.decode(var) for var in self._sess.run(tf.report_uninitialized_variables())] uninitialized_vars = [var for var in tf.global_variables() if var.name.split(':')[0] in uninitialized_var_names] self._sess.run(tf.initialize_variables(uninitialized_vars))
Example #23
Source File: networks.py From tf-adnet-tracking with GNU General Public License v3.0 | 5 votes |
def read_original_weights(self, tf_session, path='./models/adnet-original/net_rl_weights.mat'): """ original mat file contains I converted 'net_rl.mat' file to 'net_rl_weights.mat' saving only weights in v7.3 format. """ init = tf.global_variables_initializer() tf_session.run(init) logger.info('all global variables initialized') weights = hdf5storage.loadmat(path) for var in tf.trainable_variables(): key = var.name.replace('/weights:0', 'f').replace('/biases:0', 'b') if key == 'fc6_1b': # add 0.01 # reference : https://github.com/hellbell/ADNet/blob/master/adnet_test.m#L39 val = np.zeros(var.shape) + 0.01 elif key == 'fc6_2b': # all zeros val = np.zeros(var.shape) else: val = weights[key] # need to make same shape. val = np.reshape(val, var.shape.as_list()) tf_session.run(var.assign(val)) logger.info('%s : original weights assigned. [0]=%s' % (var.name, str(val[0])[:20])) print(tf_session.run(tf.report_uninitialized_variables())) return weights
Example #24
Source File: supervisor_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testReadyForLocalInitOp(self): server = tf.train.Server.create_local_server() logdir = _test_dir("default_ready_for_local_init_op") uid = uuid.uuid4().hex def get_session(is_chief): g = tf.Graph() with g.as_default(): with tf.device("/job:local"): v = tf.Variable( 1, name="default_ready_for_local_init_op_v_" + str(uid)) vadd = v.assign_add(1) w = tf.Variable( v, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES], name="default_ready_for_local_init_op_w_" + str(uid)) ready_for_local_init_op = tf.report_uninitialized_variables( tf.all_variables()) sv = tf.train.Supervisor( logdir=logdir, is_chief=is_chief, graph=g, recovery_wait_secs=1, init_op=v.initializer, ready_for_local_init_op=ready_for_local_init_op) sess = sv.prepare_or_wait_for_session(server.target) return sv, sess, v, vadd, w sv0, sess0, v0, _, w0 = get_session(True) sv1, sess1, _, vadd1, w1 = get_session(False) self.assertEqual(1, sess0.run(w0)) self.assertEqual(2, sess1.run(vadd1)) self.assertEqual(1, sess1.run(w1)) self.assertEqual(2, sess0.run(v0)) sv0.stop() sv1.stop()
Example #25
Source File: faster_rcnn_meta_arch_test_lib.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_restore_map_for_classification_ckpt(self): # Define mock tensorflow classification graph and save variables. test_graph_classification = tf.Graph() with test_graph_classification.as_default(): image = tf.placeholder(dtype=tf.float32, shape=[1, 20, 20, 3]) with tf.variable_scope('mock_model'): net = slim.conv2d(image, num_outputs=3, kernel_size=1, scope='layer1') slim.conv2d(net, num_outputs=3, kernel_size=1, scope='layer2') init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) # Create tensorflow detection graph and load variables from # classification checkpoint. test_graph_detection = tf.Graph() with test_graph_detection.as_default(): model = self._build_model( is_training=False, first_stage_only=False, second_stage_batch_size=6) inputs_shape = (2, 20, 20, 3) inputs = tf.to_float(tf.random_uniform( inputs_shape, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs = model.preprocess(inputs) prediction_dict = model.predict(preprocessed_inputs) model.postprocess(prediction_dict) var_map = model.restore_map(from_detection_checkpoint=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) with self.test_session() as sess: saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn(model.first_stage_feature_extractor_scope, var.name) self.assertNotIn(model.second_stage_feature_extractor_scope, var.name)
Example #26
Source File: ssd_meta_arch_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_restore_map_for_classification_ckpt(self): # Define mock tensorflow classification graph and save variables. test_graph_classification = tf.Graph() with test_graph_classification.as_default(): image = tf.placeholder(dtype=tf.float32, shape=[1, 20, 20, 3]) with tf.variable_scope('mock_model'): net = slim.conv2d(image, num_outputs=32, kernel_size=1, scope='layer1') slim.conv2d(net, num_outputs=3, kernel_size=1, scope='layer2') init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) # Create tensorflow detection graph and load variables from # classification checkpoint. test_graph_detection = tf.Graph() with test_graph_detection.as_default(): inputs_shape = [2, 2, 2, 3] inputs = tf.to_float(tf.random_uniform( inputs_shape, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs = self._model.preprocess(inputs) prediction_dict = self._model.predict(preprocessed_inputs) self._model.postprocess(prediction_dict) var_map = self._model.restore_map(from_detection_checkpoint=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) with self.test_session() as sess: saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var.name)
Example #27
Source File: ssd_meta_arch_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_restore_map_for_detection_ckpt(self): init_op = tf.global_variables_initializer() saver = tf_saver.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) var_map = self._model.restore_map(from_detection_checkpoint=True) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var.name)
Example #28
Source File: faster_rcnn_meta_arch_test_lib.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_restore_map_for_detection_ckpt(self): # Define first detection graph and save variables. test_graph_detection1 = tf.Graph() with test_graph_detection1.as_default(): model = self._build_model( is_training=False, first_stage_only=False, second_stage_batch_size=6) inputs_shape = (2, 20, 20, 3) inputs = tf.to_float(tf.random_uniform( inputs_shape, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs = model.preprocess(inputs) prediction_dict = model.predict(preprocessed_inputs) model.postprocess(prediction_dict) init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) # Define second detection graph and restore variables. test_graph_detection2 = tf.Graph() with test_graph_detection2.as_default(): model2 = self._build_model(is_training=False, first_stage_only=False, second_stage_batch_size=6, num_classes=42) inputs_shape2 = (2, 20, 20, 3) inputs2 = tf.to_float(tf.random_uniform( inputs_shape2, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs2 = model2.preprocess(inputs2) prediction_dict2 = model2.predict(preprocessed_inputs2) model2.postprocess(prediction_dict2) var_map = model2.restore_map(from_detection_checkpoint=True) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) with self.test_session() as sess: saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn(model2.first_stage_feature_extractor_scope, var.name) self.assertNotIn(model2.second_stage_feature_extractor_scope, var.name)
Example #29
Source File: faster_rcnn_meta_arch_test_lib.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_restore_map_for_classification_ckpt(self): # Define mock tensorflow classification graph and save variables. test_graph_classification = tf.Graph() with test_graph_classification.as_default(): image = tf.placeholder(dtype=tf.float32, shape=[1, 20, 20, 3]) with tf.variable_scope('mock_model'): net = slim.conv2d(image, num_outputs=3, kernel_size=1, scope='layer1') slim.conv2d(net, num_outputs=3, kernel_size=1, scope='layer2') init_op = tf.global_variables_initializer() saver = tf.train.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) # Create tensorflow detection graph and load variables from # classification checkpoint. test_graph_detection = tf.Graph() with test_graph_detection.as_default(): model = self._build_model( is_training=False, first_stage_only=False, second_stage_batch_size=6) inputs_shape = (2, 20, 20, 3) inputs = tf.to_float(tf.random_uniform( inputs_shape, minval=0, maxval=255, dtype=tf.int32)) preprocessed_inputs = model.preprocess(inputs) prediction_dict = model.predict(preprocessed_inputs) model.postprocess(prediction_dict) var_map = model.restore_map(from_detection_checkpoint=False) self.assertIsInstance(var_map, dict) saver = tf.train.Saver(var_map) with self.test_session() as sess: saver.restore(sess, saved_model_path) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn(model.first_stage_feature_extractor_scope, var.name) self.assertNotIn(model.second_stage_feature_extractor_scope, var.name)
Example #30
Source File: ssd_meta_arch_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_restore_fn_detection(self): init_op = tf.global_variables_initializer() saver = tf_saver.Saver() save_path = self.get_temp_dir() with self.test_session() as sess: sess.run(init_op) saved_model_path = saver.save(sess, save_path) restore_fn = self._model.restore_fn(saved_model_path, from_detection_checkpoint=True) restore_fn(sess) for var in sess.run(tf.report_uninitialized_variables()): self.assertNotIn('FeatureExtractor', var.name)