Python tensorflow.decode_raw() Examples
The following are 30
code examples of tensorflow.decode_raw().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: dataset.py From DNA-GAN with MIT License | 7 votes |
def parse_fn(self, serialized_example): features={ 'image/id_name': tf.FixedLenFeature([], tf.string), 'image/height' : tf.FixedLenFeature([], tf.int64), 'image/width' : tf.FixedLenFeature([], tf.int64), 'image/encoded': tf.FixedLenFeature([], tf.string), } for name in self.feature_list: features[name] = tf.FixedLenFeature([], tf.int64) example = tf.parse_single_example(serialized_example, features=features) image = tf.decode_raw(example['image/encoded'], tf.uint8) raw_height = tf.cast(example['image/height'], tf.int32) raw_width = tf.cast(example['image/width'], tf.int32) image = tf.reshape(image, [raw_height, raw_width, 3]) image = tf.image.resize_images(image, size=[self.height, self.width]) # from IPython import embed; embed(); exit() feature_val_list = [tf.cast(example[name], tf.float32) for name in self.feature_list] return image, feature_val_list
Example #2
Source File: unet-TF-withBatchNormal.py From U-net with MIT License | 6 votes |
def read_image(file_queue): reader = tf.TFRecordReader() # key, value = reader.read(file_queue) _, serialized_example = reader.read(file_queue) features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.string), 'image_raw': tf.FixedLenFeature([], tf.string) }) image = tf.decode_raw(features['image_raw'], tf.uint8) # print('image ' + str(image)) image = tf.reshape(image, [INPUT_IMG_WIDE, INPUT_IMG_HEIGHT, INPUT_IMG_CHANNEL]) # image = tf.image.convert_image_dtype(image, dtype=tf.float32) # image = tf.image.resize_images(image, (IMG_HEIGHT, IMG_WIDE)) # image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 label = tf.decode_raw(features['label'], tf.uint8) # label = tf.cast(label, tf.int64) label = tf.reshape(label, [OUTPUT_IMG_WIDE, OUTPUT_IMG_HEIGHT]) # label = tf.decode_raw(features['image_raw'], tf.uint8) # print(label) # label = tf.reshape(label, shape=[1, 4]) return image, label
Example #3
Source File: vfn_train.py From view-finding-network with GNU General Public License v3.0 | 6 votes |
def read_and_decode_aug(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, # Defaults are not specified since both keys are required. features={ 'image_raw': tf.FixedLenFeature([], tf.string), }) image = tf.decode_raw(features['image_raw'], tf.uint8) image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6])) # Convert from [0, 255] -> [-0.5, 0.5] floats. image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 image = tf.image.random_brightness(image, 0.01) image = tf.image.random_contrast(image, 0.95, 1.05) return tf.split(image, 2, 2) # 3rd dimension two parts
Example #4
Source File: vfn_train.py From view-finding-network with GNU General Public License v3.0 | 6 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, # Defaults are not specified since both keys are required. features={ 'image_raw': tf.FixedLenFeature([], tf.string), }) image = tf.decode_raw(features['image_raw'], tf.uint8) image = tf.reshape(image, [227, 227, 6]) # Convert from [0, 255] -> [-0.5, 0.5] floats. image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 return tf.split(image, 2, 2) # 3rd dimension two parts
Example #5
Source File: TrainLSP.py From deeppose with GNU General Public License v3.0 | 6 votes |
def read_my_file_format(filename_queue): image_reader = tf.WholeFileReader() _, image_data = image_reader.read(filename_queue) # Convert from a string to a vector of uint8 that is record_bytes long. record_bytes = tf.decode_raw(image_data, tf.uint8) # The first bytes represent the label, which we convert from uint8->float32. labels_ = tf.cast(tf.slice(record_bytes, [0], [LSPGlobals.TotalLabels]), tf.float32) # The remaining bytes after the label represent the image, which we reshape # from [depth * height * width] to [depth, height, width]. depth_major = tf.reshape(tf.slice(record_bytes, [LSPGlobals.TotalLabels], [LSPGlobals.TotalImageBytes]), [FLAGS.input_size, FLAGS.input_size, FLAGS.input_depth]) # Convert from [depth, height, width] to [height, width, depth]. #processed_example = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32) return depth_major, labels_
Example #6
Source File: model.py From cloudml-dist-mnist-example with Apache License 2.0 | 6 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), }) image = tf.decode_raw(features['image_raw'], tf.uint8) image.set_shape([784]) image = tf.cast(image, tf.float32) * (1. / 255) label = tf.cast(features['label'], tf.int32) return image, label
Example #7
Source File: unet-TF.py From U-net with MIT License | 6 votes |
def read_image(file_queue): reader = tf.TFRecordReader() # key, value = reader.read(file_queue) _, serialized_example = reader.read(file_queue) features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.string), 'image_raw': tf.FixedLenFeature([], tf.string) }) image = tf.decode_raw(features['image_raw'], tf.uint8) # print('image ' + str(image)) image = tf.reshape(image, [INPUT_IMG_WIDE, INPUT_IMG_HEIGHT, INPUT_IMG_CHANNEL]) # image = tf.image.convert_image_dtype(image, dtype=tf.float32) # image = tf.image.resize_images(image, (IMG_HEIGHT, IMG_WIDE)) # image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 label = tf.decode_raw(features['label'], tf.uint8) # label = tf.cast(label, tf.int64) label = tf.reshape(label, [OUTPUT_IMG_WIDE, OUTPUT_IMG_HEIGHT]) # label = tf.decode_raw(features['image_raw'], tf.uint8) # print(label) # label = tf.reshape(label, shape=[1, 4]) return image, label
Example #8
Source File: reader.py From CapsLayer with Apache License 2.0 | 6 votes |
def parse_fun(serialized_example): """ Data parsing function. """ features = tf.parse_single_example(serialized_example, features={'image': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), 'height': tf.FixedLenFeature([], tf.int64), 'width': tf.FixedLenFeature([], tf.int64), 'depth': tf.FixedLenFeature([], tf.int64)}) height = tf.cast(features['height'], tf.int32) width = tf.cast(features['width'], tf.int32) depth = tf.cast(features['depth'], tf.int32) image = tf.decode_raw(features['image'], tf.float32) image = tf.reshape(image, shape=[height * width * depth]) image.set_shape([28 * 28 * 1]) image = tf.cast(image, tf.float32) * (1. / 255) label = tf.cast(features['label'], tf.int32) features = {'images': image, 'labels': label} return(features)
Example #9
Source File: reader.py From CapsLayer with Apache License 2.0 | 6 votes |
def parse_fun(serialized_example): """ Data parsing function. """ features = tf.parse_single_example(serialized_example, features={'image': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), 'height': tf.FixedLenFeature([], tf.int64), 'width': tf.FixedLenFeature([], tf.int64), 'depth': tf.FixedLenFeature([], tf.int64)}) height = tf.cast(features['height'], tf.int32) width = tf.cast(features['width'], tf.int32) depth = tf.cast(features['depth'], tf.int32) image = tf.decode_raw(features['image'], tf.float32) image = tf.reshape(image, shape=[height * width * depth]) image.set_shape([28 * 28 * 1]) image = tf.cast(image, tf.float32) * (1. / 255) label = tf.cast(features['label'], tf.int32) features = {'images': image, 'labels': label} return(features)
Example #10
Source File: read_tfrecord.py From 2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement with MIT License | 6 votes |
def _extract_features_batch(self, serialized_batch): features = tf.parse_example( serialized_batch, features={'images': tf.FixedLenFeature([], tf.string), 'imagepaths': tf.FixedLenFeature([], tf.string), 'labels': tf.VarLenFeature(tf.int64), }) bs = features['images'].shape[0] images = tf.decode_raw(features['images'], tf.uint8) w, h = tuple(CFG.ARCH.INPUT_SIZE) images = tf.cast(x=images, dtype=tf.float32) #images = tf.subtract(tf.divide(images, 128.0), 1.0) images = tf.reshape(images, [bs, h, -1, CFG.ARCH.INPUT_CHANNELS]) labels = features['labels'] labels = tf.cast(labels, tf.int32) imagepaths = features['imagepaths'] return images, labels, imagepaths
Example #11
Source File: train.py From centernet_tensorflow_wilderface_voc with MIT License | 6 votes |
def parse_color_data(example_proto): features = {"img_raw": tf.FixedLenFeature([], tf.string), "label": tf.FixedLenFeature([], tf.string), "width": tf.FixedLenFeature([], tf.int64), "height": tf.FixedLenFeature([], tf.int64)} parsed_features = tf.parse_single_example(example_proto, features) img = parsed_features["img_raw"] img = tf.decode_raw(img, tf.uint8) width = parsed_features["width"] height = parsed_features["height"] img = tf.reshape(img, [height, width, 3]) img = tf.cast(img, tf.float32) * (1. / 255.) - 0.5 label = parsed_features["label"] label = tf.decode_raw(label, tf.float32) return img, label
Example #12
Source File: read_data.py From CVTron with Apache License 2.0 | 6 votes |
def tf_record_parser(record): keys_to_features = { "image_raw": tf.FixedLenFeature((), tf.string, default_value=""), 'annotation_raw': tf.FixedLenFeature([], tf.string), "height": tf.FixedLenFeature((), tf.int64), "width": tf.FixedLenFeature((), tf.int64) } features = tf.parse_single_example(record, keys_to_features) image = tf.decode_raw(features['image_raw'], tf.uint8) annotation = tf.decode_raw(features['annotation_raw'], tf.uint8) height = tf.cast(features['height'], tf.int32) width = tf.cast(features['width'], tf.int32) # reshape input and annotation images image = tf.reshape(image, (height, width, 3), name="image_reshape") annotation = tf.reshape(annotation, (height, width, 1), name="annotation_reshape") annotation = tf.to_int32(annotation) return tf.to_float(image), annotation, (height, width)
Example #13
Source File: input_fn.py From 3D-Unet--Tensorflow with GNU General Public License v3.0 | 6 votes |
def decode_pred(serialized_example): """Parses prediction data from the given `serialized_example`.""" features = tf.parse_single_example( serialized_example, features={ 'T1':tf.FixedLenFeature([],tf.string), 'T2':tf.FixedLenFeature([], tf.string) }) patch_shape = [conf.patch_size, conf.patch_size, conf.patch_size] # Convert from a scalar string tensor image_T1 = tf.decode_raw(features['T1'], tf.int16) image_T1 = tf.reshape(image_T1, patch_shape) image_T2 = tf.decode_raw(features['T2'], tf.int16) image_T2 = tf.reshape(image_T2, patch_shape) # Convert dtype. image_T1 = tf.cast(image_T1, tf.float32) image_T2 = tf.cast(image_T2, tf.float32) label = tf.zeros(image_T1.shape) # pseudo label return image_T1, image_T2, label
Example #14
Source File: get_data.py From glow with MIT License | 6 votes |
def parse_tfrecord_tf(record, res, rnd_crop): features = tf.parse_single_example(record, features={ 'shape': tf.FixedLenFeature([3], tf.int64), 'data': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([1], tf.int64)}) # label is always 0 if uncondtional # to get CelebA attr, add 'attr': tf.FixedLenFeature([40], tf.int64) data, label, shape = features['data'], features['label'], features['shape'] label = tf.cast(tf.reshape(label, shape=[]), dtype=tf.int32) img = tf.decode_raw(data, tf.uint8) if rnd_crop: # For LSUN Realnvp only - random crop img = tf.reshape(img, shape) img = tf.random_crop(img, [res, res, 3]) img = tf.reshape(img, [res, res, 3]) return img, label # to get CelebA attr, also return attr
Example #15
Source File: tf_data_utils.py From nucleus7 with Mozilla Public License 2.0 | 6 votes |
def get_tfrecords_features(self) -> dict: """ Return dict, possibly nested, with feature names as keys and its serialized type as values of type :obj:`FixedLenFeature`. Keys should not have any '/', use nested dict instead. Returns ------- features features inside of tfrecords file See Also -------- output_types :func:`tf.decode_raw` """
Example #16
Source File: tf_data_utils.py From nucleus7 with Mozilla Public License 2.0 | 6 votes |
def decode_field(self, field_name: str, field_value: Union[tf.Tensor, tf.SparseTensor], field_type: Optional[tf.DType] = None) -> tf.Tensor: """ Decode a field from a tfrecord example Parameters ---------- field_name name of the field, if nested - will be separated using "/" field_value value of the field from tfrecords example field_type type of the decoded field from self.get_tfrecords_output_types or None, if it was not provided """ # pylint: disable=no-self-use # is designed to be overridden # pylint: disable=unused-argument # this method is really an interface, but has a default implementation. if field_type is None: return field_value return tf.decode_raw(field_value, field_type)
Example #17
Source File: read_tfrecord.py From R2CNN-Plus-Plus_Tensorflow with MIT License | 5 votes |
def read_single_example_and_decode(filename_queue): # tfrecord_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB) # reader = tf.TFRecordReader(options=tfrecord_options) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized=serialized_example, features={ 'img_name': tf.FixedLenFeature([], tf.string), 'img_height': tf.FixedLenFeature([], tf.int64), 'img_width': tf.FixedLenFeature([], tf.int64), 'img': tf.FixedLenFeature([], tf.string), 'gtboxes_and_label': tf.FixedLenFeature([], tf.string), 'num_objects': tf.FixedLenFeature([], tf.int64) } ) img_name = features['img_name'] img_height = tf.cast(features['img_height'], tf.int32) img_width = tf.cast(features['img_width'], tf.int32) img = tf.decode_raw(features['img'], tf.uint8) img = tf.reshape(img, shape=[img_height, img_width, 3]) # DOTA dataset need exchange img_width and img_height # img = tf.reshape(img, shape=[img_width, img_height, 3]) gtboxes_and_label = tf.decode_raw(features['gtboxes_and_label'], tf.int32) gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 9]) num_objects = tf.cast(features['num_objects'], tf.int32) return img_name, img, gtboxes_and_label, num_objects
Example #18
Source File: cifar10.py From DOTA_models with Apache License 2.0 | 5 votes |
def parser(self, value): """Parse a Cifar10 record from value. Output images are in [height, width, depth] layout. """ # Dimensions of the images in the CIFAR-10 dataset. # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the # input format. label_bytes = 1 image_bytes = HEIGHT * WIDTH * DEPTH # Every record consists of a label followed by the image, with a # fixed number of bytes for each. record_bytes = label_bytes + image_bytes # Convert from a string to a vector of uint8 that is record_bytes long. record_as_bytes = tf.decode_raw(value, tf.uint8) # The first bytes represent the label, which we convert from # uint8->int32. label = tf.cast( tf.strided_slice(record_as_bytes, [0], [label_bytes]), tf.int32) label.set_shape([1]) # The remaining bytes after the label represent the image, which # we reshape from [depth * height * width] to [depth, height, width]. depth_major = tf.reshape( tf.strided_slice(record_as_bytes, [label_bytes], [record_bytes]), [3, 32, 32]) # Convert from [depth, height, width] to [height, width, depth]. # This puts data in a compatible layout with TF image preprocessing APIs. image = tf.transpose(depth_major, [1, 2, 0]) # Do custom preprocessing here. image = self.preprocess(image) return image, label
Example #19
Source File: generate.py From glow with MIT License | 5 votes |
def parse_celeba_image(max_res, transpose=False): def _process_image(img): img = tf.cast(img, 'float32') resolution_log2 = int(np.log2(max_res)) q_imgs = [] for lod in range(resolution_log2 - 1): if lod: img = downsample(img) quant = x_to_uint8(img) q_imgs.append(quant) return q_imgs def _parse_image(example): features = tf.parse_single_example(example, features={ 'shape': tf.FixedLenFeature([3], tf.int64), 'data': tf.FixedLenFeature([], tf.string), 'attr': tf.FixedLenFeature([40], tf.int64)}) shape = features['shape'] data = features['data'] attr = features['attr'] data = tf.decode_raw(data, tf.uint8) img = tf.reshape(data, shape) if transpose: img = tf.transpose(img, (1, 2, 0)) # CHW -> HWC imgs = _process_image(img) parsed = (attr, *imgs) return parsed return _parse_image
Example #20
Source File: resnet.py From DeepFolding with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_input(self): with tf.device('/cpu:0'): def parser(record): keys_to_features = { 'x1d' :tf.FixedLenFeature([], tf.string), 'x2d' :tf.FixedLenFeature([], tf.string), 'y' :tf.FixedLenFeature([], tf.string), 'size':tf.FixedLenFeature([], tf.int64)} parsed = tf.parse_single_example(record, keys_to_features) x1d = tf.decode_raw(parsed['x1d'], tf.float32) x2d = tf.decode_raw(parsed['x2d'] ,tf.float32) size = parsed['size'] x1d = tf.reshape(x1d, tf.stack([size, -1])) x2d = tf.reshape(x2d, tf.stack([size, size, -1])) y = tf.decode_raw(parsed['y'],tf.int16) y = tf.cast(y, tf.float32) y = tf.reshape(y, tf.stack([size, size])) return x1d, x2d, y, size dataset = tf.data.TFRecordDataset(self.input_tfrecord_files) dataset = dataset.map(parser, num_parallel_calls=64) dataset = dataset.prefetch(1024) dataset = dataset.shuffle(buffer_size=512) dataset = dataset.padded_batch(self.train_config.batch_size, padded_shapes=([PADDING_FULL_LEN, self.x1d_channel_dim], [PADDING_FULL_LEN, PADDING_FULL_LEN, self.x2d_channel_dim], [PADDING_FULL_LEN, PADDING_FULL_LEN], []), padding_values=(0.0, 0.0, -1.0, np.int64(PADDING_FULL_LEN))) iterator = dataset.make_initializable_iterator() x1d, x2d, y, size = iterator.get_next() return x1d, x2d, y, size, iterator
Example #21
Source File: TrainLSP.py From deeppose with GNU General Public License v3.0 | 5 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) # The serialized example is converted back to actual values. # One needs to describe the format of the objects to be returned features = tf.parse_single_example( serialized_example, features={ # We know the length of both fields. If not the # tf.VarLenFeature could be used 'label': tf.FixedLenFeature([LSPGlobals.TotalLabels], tf.int64), 'image_raw': tf.FixedLenFeature([], tf.string) }) # now return the converted data image_as_vector = tf.decode_raw(features['image_raw'], tf.uint8) image_as_vector.set_shape([LSPGlobals.TotalImageBytes]) image = tf.reshape(image_as_vector, [FLAGS.input_size, FLAGS.input_size, FLAGS.input_depth]) # Convert from [0, 255] -> [-0.5, 0.5] floats. image_float = tf.cast(image, tf.float32) * (1. / 255) - 0.5 # Convert label from a scalar uint8 tensor to an int32 scalar. label = tf.cast(features['label'], tf.int32) return label, image_float
Example #22
Source File: input_fn.py From 3D-Unet--Tensorflow with GNU General Public License v3.0 | 5 votes |
def decode_valid(serialized_example): """Parses validation data from the given `serialized_example`.""" features = tf.parse_single_example( serialized_example, features={ 'T1':tf.FixedLenFeature([],tf.string), 'T2':tf.FixedLenFeature([], tf.string), 'label':tf.FixedLenFeature([],tf.string) }) patch_shape = [conf.patch_size, conf.patch_size, conf.patch_size] # Convert from a scalar string tensor image_T1 = tf.decode_raw(features['T1'], tf.int16) image_T1 = tf.reshape(image_T1, patch_shape) image_T2 = tf.decode_raw(features['T2'], tf.int16) image_T2 = tf.reshape(image_T2, patch_shape) label = tf.decode_raw(features['label'], tf.uint8) label = tf.reshape(label, patch_shape) # Convert dtype. image_T1 = tf.cast(image_T1, tf.float32) image_T2 = tf.cast(image_T2, tf.float32) return image_T1, image_T2, label
Example #23
Source File: input_fn.py From 3D-Unet--Tensorflow with GNU General Public License v3.0 | 5 votes |
def decode_train(serialized_example): """Parses training data from the given `serialized_example`.""" features = tf.parse_single_example( serialized_example, features={ 'T1':tf.FixedLenFeature([],tf.string), 'T2':tf.FixedLenFeature([], tf.string), 'label':tf.FixedLenFeature([],tf.string), 'original_shape':tf.FixedLenFeature(3, tf.int64), 'cut_size':tf.FixedLenFeature(6, tf.int64) }) img_shape = features['original_shape'] cut_size = features['cut_size'] # Convert from a scalar string tensor image_T1 = tf.decode_raw(features['T1'], tf.int16) image_T1 = tf.reshape(image_T1, img_shape) image_T2 = tf.decode_raw(features['T2'], tf.int16) image_T2 = tf.reshape(image_T2, img_shape) label = tf.decode_raw(features['label'], tf.uint8) label = tf.reshape(label, img_shape) # Convert dtype. image_T1 = tf.cast(image_T1, tf.float32) image_T2 = tf.cast(image_T2, tf.float32) label = tf.cast(label, tf.float32) return image_T1, image_T2, label, cut_size
Example #24
Source File: dataset.py From cloudml-samples with Apache License 2.0 | 5 votes |
def dataset(directory, images_file, labels_file): """Download and parse MNIST dataset.""" images_file = download(directory, images_file) labels_file = download(directory, labels_file) check_image_file_header(images_file) check_labels_file_header(labels_file) def decode_image(image): # Normalize from [0, 255] to [0.0, 1.0] image = tf.decode_raw(image, tf.uint8) image = tf.cast(image, tf.float32) image = tf.reshape(image, [784]) return image / 255.0 def decode_label(label): label = tf.decode_raw(label, tf.uint8) # tf.string -> [tf.uint8] label = tf.reshape(label, []) # label is a scalar return tf.to_int32(label) images = tf.data.FixedLengthRecordDataset( images_file, 28 * 28, header_bytes=16).map(decode_image) labels = tf.data.FixedLengthRecordDataset( labels_file, 1, header_bytes=8).map(decode_label) return tf.data.Dataset.zip((images, labels))
Example #25
Source File: coco.py From FastMaskRCNN with Apache License 2.0 | 5 votes |
def read(tfrecords_filename): if not isinstance(tfrecords_filename, list): tfrecords_filename = [tfrecords_filename] filename_queue = tf.train.string_input_producer( tfrecords_filename, num_epochs=100) options = tf.python_io.TFRecordOptions(TFRecordCompressionType.ZLIB) reader = tf.TFRecordReader(options=options) _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'image/img_id': tf.FixedLenFeature([], tf.int64), 'image/encoded': tf.FixedLenFeature([], tf.string), 'image/height': tf.FixedLenFeature([], tf.int64), 'image/width': tf.FixedLenFeature([], tf.int64), 'label/num_instances': tf.FixedLenFeature([], tf.int64), 'label/gt_masks': tf.FixedLenFeature([], tf.string), 'label/gt_boxes': tf.FixedLenFeature([], tf.string), 'label/encoded': tf.FixedLenFeature([], tf.string), }) # image = tf.image.decode_jpeg(features['image/encoded'], channels=3) img_id = tf.cast(features['image/img_id'], tf.int32) ih = tf.cast(features['image/height'], tf.int32) iw = tf.cast(features['image/width'], tf.int32) num_instances = tf.cast(features['label/num_instances'], tf.int32) image = tf.decode_raw(features['image/encoded'], tf.uint8) imsize = tf.size(image) image = tf.cond(tf.equal(imsize, ih * iw), \ lambda: tf.image.grayscale_to_rgb(tf.reshape(image, (ih, iw, 1))), \ lambda: tf.reshape(image, (ih, iw, 3))) gt_boxes = tf.decode_raw(features['label/gt_boxes'], tf.float32) gt_boxes = tf.reshape(gt_boxes, [num_instances, 5]) gt_masks = tf.decode_raw(features['label/gt_masks'], tf.uint8) gt_masks = tf.cast(gt_masks, tf.int32) gt_masks = tf.reshape(gt_masks, [num_instances, ih, iw]) return image, ih, iw, gt_boxes, gt_masks, num_instances, img_id
Example #26
Source File: fully_connected_reader.py From tensorflow_input_image_by_tfrecord with Apache License 2.0 | 5 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, # Defaults are not specified since both keys are required. features={ 'image/encoded': tf.FixedLenFeature([], tf.string), 'image/class/label': tf.FixedLenFeature([], tf.int64), }) # Convert from a scalar string tensor (whose single string has # length mnist.IMAGE_PIXELS) to a uint8 tensor with shape # [mnist.IMAGE_PIXELS]. image = tf.decode_raw(features['image/encoded'], tf.uint8) image.set_shape([128*128]) # OPTIONAL: Could reshape into a 28x28 image and apply distortions # here. Since we are not applying any distortions in this # example, and the next step expects the image to be flattened # into a vector, we don't bother. # Convert from [0, 255] -> [-0.5, 0.5] floats. image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 # Convert label from a scalar uint8 tensor to an int32 scalar. label = tf.cast(features['image/class/label'], tf.int32) return image, label
Example #27
Source File: test.py From video2tfrecord with MIT License | 5 votes |
def read_and_decode(filename_queue, n_frames): """Creates one image sequence""" reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) image_seq = [] if n_frames == 'all': n_frames = 354 # travis kills due to too large tfrecord for image_count in range(n_frames): path = 'blob' + '/' + str(image_count) feature_dict = {path: tf.FixedLenFeature([], tf.string), 'height': tf.FixedLenFeature([], tf.int64), 'width': tf.FixedLenFeature([], tf.int64), 'depth': tf.FixedLenFeature([], tf.int64)} features = tf.parse_single_example(serialized_example, features=feature_dict) image_buffer = tf.reshape(features[path], shape=[]) image = tf.decode_raw(image_buffer, tf.uint8) image = tf.reshape(image, tf.stack([height, width, num_depth])) image = tf.reshape(image, [1, height, width, num_depth]) image_seq.append(image) image_seq = tf.concat(image_seq, 0) return image_seq
Example #28
Source File: data_load.py From word_ordering with Apache License 2.0 | 5 votes |
def get_batch_data(): with tf.device("/cpu:0"): # Load data Y = load_data(mode="train") # calc total batch count num_batch = len(Y) // hp.batch_size # Convert to tensor Y = tf.convert_to_tensor(Y) # Create Queues y, = tf.train.slice_input_producer([Y,]) # Restore to int32 y = tf.decode_raw(y, tf.int32) # Random generate inputs x = tf.random_shuffle(y) # create batch queues x, y = tf.train.batch([x, y], num_threads=8, batch_size=hp.batch_size, capacity=hp.batch_size * 64, allow_smaller_final_batch=False, dynamic_pad=True) return x, y, num_batch # (N, T), () #
Example #29
Source File: read_tfrecord.py From R2CNN_Faster-RCNN_Tensorflow with MIT License | 5 votes |
def read_single_example_and_decode(filename_queue): # tfrecord_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB) # reader = tf.TFRecordReader(options=tfrecord_options) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized=serialized_example, features={ 'img_name': tf.FixedLenFeature([], tf.string), 'img_height': tf.FixedLenFeature([], tf.int64), 'img_width': tf.FixedLenFeature([], tf.int64), 'img': tf.FixedLenFeature([], tf.string), 'gtboxes_and_label': tf.FixedLenFeature([], tf.string), 'num_objects': tf.FixedLenFeature([], tf.int64) } ) img_name = features['img_name'] img_height = tf.cast(features['img_height'], tf.int32) img_width = tf.cast(features['img_width'], tf.int32) img = tf.decode_raw(features['img'], tf.uint8) img = tf.reshape(img, shape=[img_height, img_width, 3]) gtboxes_and_label = tf.decode_raw(features['gtboxes_and_label'], tf.int32) gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 9]) num_objects = tf.cast(features['num_objects'], tf.int32) return img_name, img, gtboxes_and_label, num_objects
Example #30
Source File: dataset.py From disentangling_conditional_gans with MIT License | 5 votes |
def parse_tfrecord_tf(record): features = tf.parse_single_example(record, features={ 'shape': tf.FixedLenFeature([3], tf.int64), 'data': tf.FixedLenFeature([], tf.string)}) data = tf.decode_raw(features['data'], tf.uint8) return tf.reshape(data, features['shape'])