Python tensorflow.int16() Examples
The following are 30
code examples of tensorflow.int16().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: diet.py From fine-lm with MIT License | 7 votes |
def diet_adam_optimizer_params(): """Default hyperparameters for a DietAdamOptimizer. Returns: a hyperparameters object. """ return tf.contrib.training.HParams( quantize=True, # use 16-bit fixed-point quantization_scale=10.0 / tf.int16.max, optimizer="DietAdam", learning_rate=1.0, learning_rate_warmup_steps=2000, learning_rate_decay_scheme="noam", # "noam" or "none" epsilon=1e-10, beta1=0.0, # we can save memory if beta1=0 beta2=0.98, factored_second_moment_accumulator=True, # this saves memory )
Example #2
Source File: tfrecord_test.py From nobrainer with Apache License 2.0 | 6 votes |
def test__dtype_to_bytes(): np_tf_dt = [ (np.uint8, tf.uint8, b"uint8"), (np.uint16, tf.uint16, b"uint16"), (np.uint32, tf.uint32, b"uint32"), (np.uint64, tf.uint64, b"uint64"), (np.int8, tf.int8, b"int8"), (np.int16, tf.int16, b"int16"), (np.int32, tf.int32, b"int32"), (np.int64, tf.int64, b"int64"), (np.float16, tf.float16, b"float16"), (np.float32, tf.float32, b"float32"), (np.float64, tf.float64, b"float64"), ] for npd, tfd, dt in np_tf_dt: npd = np.dtype(npd) assert tfrecord._dtype_to_bytes(npd) == dt assert tfrecord._dtype_to_bytes(tfd) == dt assert tfrecord._dtype_to_bytes("float32") == b"float32" assert tfrecord._dtype_to_bytes("foobar") == b"foobar"
Example #3
Source File: input_fn.py From 3D-Unet--Tensorflow with GNU General Public License v3.0 | 6 votes |
def decode_pred(serialized_example): """Parses prediction data from the given `serialized_example`.""" features = tf.parse_single_example( serialized_example, features={ 'T1':tf.FixedLenFeature([],tf.string), 'T2':tf.FixedLenFeature([], tf.string) }) patch_shape = [conf.patch_size, conf.patch_size, conf.patch_size] # Convert from a scalar string tensor image_T1 = tf.decode_raw(features['T1'], tf.int16) image_T1 = tf.reshape(image_T1, patch_shape) image_T2 = tf.decode_raw(features['T2'], tf.int16) image_T2 = tf.reshape(image_T2, patch_shape) # Convert dtype. image_T1 = tf.cast(image_T1, tf.float32) image_T2 = tf.cast(image_T2, tf.float32) label = tf.zeros(image_T1.shape) # pseudo label return image_T1, image_T2, label
Example #4
Source File: tensorflow_util.py From MedicalDataAugmentationTool with GNU General Public License v3.0 | 6 votes |
def reduce_mean_support_empty(input, keepdims=False): return tf.cond(tf.size(input) > 0, lambda: tf.reduce_mean(input, keepdims=keepdims), lambda: tf.zeros_like(input)) # def bit_tensor_list(input): # assert input.dtype in [tf.uint8, tf.uint16, tf.uint32, tf.uint64], 'unsupported data type, must be uint*' # num_bits = 0 # if input.dtype == tf.int8: # num_bits = 8 # elif input.dtype == tf.int16: # num_bits = 16 # elif input.dtype == tf.uint32: # num_bits = 32 # elif input.dtype == tf.uint64: # num_bits = 64 # bit_tensors = [] # for i in range(num_bits): # current_bit = 1 << i # current_bit_tensor = tf.bitwise.bitwise_and(input, current_bit) == 1 # bit_tensors.append(current_bit_tensor) # print(bit_tensors) # return bit_tensors
Example #5
Source File: tf_utils.py From deepsignal with GNU General Public License v3.0 | 6 votes |
def parse_a_line_b(value, base_num, signal_num): vec = tf.decode_raw(value, tf.int8) bases = tf.cast(tf.reshape(tf.strided_slice(vec, [0], [base_num]), [base_num]), dtype=tf.int32) means = tf.bitcast( tf.reshape(tf.strided_slice(vec, [base_num], [base_num + base_num * 4]), [base_num, 4]), type=tf.float32) stds = tf.bitcast( tf.reshape(tf.strided_slice(vec, [base_num * 5], [base_num * 5 + base_num * 4]), [base_num, 4]), type=tf.float32) sanum = tf.cast(tf.bitcast( tf.reshape(tf.strided_slice(vec, [base_num * 9], [base_num * 9 + base_num * 2]), [base_num, 2]), type=tf.int16), dtype=tf.int32) signals = tf.bitcast( tf.reshape(tf.strided_slice(vec, [base_num * 11], [base_num * 11 + 4 * signal_num]), [signal_num, 4]), type=tf.float32) labels = tf.cast( tf.reshape(tf.strided_slice(vec, [base_num * 11 + signal_num * 4], [base_num * 11 + signal_num * 4 + 1]), [1]), dtype=tf.int32) return bases, means, stds, sanum, signals, labels
Example #6
Source File: tensorflow_backend.py From KerasNeuralFingerprint with MIT License | 6 votes |
def _convert_string_dtype(dtype): if dtype == 'float16': return tf.float16 if dtype == 'float32': return tf.float32 elif dtype == 'float64': return tf.float64 elif dtype == 'int16': return tf.int16 elif dtype == 'int32': return tf.int32 elif dtype == 'int64': return tf.int64 elif dtype == 'uint8': return tf.int8 elif dtype == 'uint16': return tf.uint16 else: raise ValueError('Unsupported dtype:', dtype)
Example #7
Source File: config.py From megnet with BSD 3-Clause "New" or "Revised" License | 6 votes |
def set_dtype(cls, data_type: str) -> None: """ Class method to set the data types Args: data_type (str): '16' or '32' """ if data_type.endswith('32'): float_key = 'float32' int_key = 'int32' elif data_type.endswith('16'): float_key = 'float16' int_key = 'int16' else: raise ValueError("Data type not known, choose '16' or '32'") cls.np_float = DTYPES[float_key]['numpy'] cls.tf_float = DTYPES[float_key]['tf'] cls.np_int = DTYPES[int_key]['numpy'] cls.tf_int = DTYPES[int_key]['tf']
Example #8
Source File: captcha_input.py From captcha_recognize with Apache License 2.0 | 6 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'label_raw': tf.FixedLenFeature([], tf.string), }) image = tf.decode_raw(features['image_raw'], tf.int16) image.set_shape([IMAGE_HEIGHT * IMAGE_WIDTH]) image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 reshape_image = tf.reshape(image, [IMAGE_HEIGHT, IMAGE_WIDTH, 1]) label = tf.decode_raw(features['label_raw'], tf.uint8) label.set_shape([CHARS_NUM * CLASSES_NUM]) reshape_label = tf.reshape(label, [CHARS_NUM, CLASSES_NUM]) return tf.cast(reshape_image, tf.float32), tf.cast(reshape_label, tf.float32)
Example #9
Source File: diet.py From fine-lm with MIT License | 6 votes |
def _quantize(x, params, randomize=True): """Quantize x according to params, optionally randomizing the rounding.""" if not params.quantize: return x if not randomize: return tf.bitcast( tf.cast(x / params.quantization_scale, tf.int16), tf.float16) abs_x = tf.abs(x) sign_x = tf.sign(x) y = abs_x / params.quantization_scale y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x))) y = tf.minimum(y, tf.int16.max) * sign_x q = tf.bitcast(tf.cast(y, tf.int16), tf.float16) return q
Example #10
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testIntTypes(self): for dtype, nptype in [ (tf.int32, np.int32), (tf.uint8, np.uint8), (tf.uint16, np.uint16), (tf.int16, np.int16), (tf.int8, np.int8)]: # Test with array. t = tensor_util.make_tensor_proto([10, 20, 30], dtype=dtype) self.assertEquals(dtype, t.dtype) self.assertProtoEquals("dim { size: 3 }", t.tensor_shape) a = tensor_util.MakeNdarray(t) self.assertEquals(nptype, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a) # Test with ndarray. t = tensor_util.make_tensor_proto(np.array([10, 20, 30], dtype=nptype)) self.assertEquals(dtype, t.dtype) self.assertProtoEquals("dim { size: 3 }", t.tensor_shape) a = tensor_util.MakeNdarray(t) self.assertEquals(nptype, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a)
Example #11
Source File: recommender.py From openrec with Apache License 2.0 | 6 votes |
def _input(self, dtype='float32', shape=None, name=None): """Define an input for the recommender. Parameters ---------- dtype: str Data type: "float16", "float32", "float64", "int8", "int16", "int32", "int64", "bool", or "string". shape: list or tuple Input shape. name: str Name of the input. Returns ------- Tensorflow placeholder Defined tensorflow placeholder. """ if dtype not in self._str_to_dtype: raise ValueError else: return tf.placeholder(self._str_to_dtype[dtype], shape=shape, name=name)
Example #12
Source File: diet.py From BERT with Apache License 2.0 | 6 votes |
def diet_adam_optimizer_params(): """Default hyperparameters for a DietAdamOptimizer. Returns: a hyperparameters object. """ return hparam.HParams( quantize=True, # use 16-bit fixed-point quantization_scale=10.0 / tf.int16.max, optimizer="DietAdam", learning_rate=1.0, learning_rate_warmup_steps=2000, learning_rate_decay_scheme="noam", # "noam" or "none" epsilon=1e-10, beta1=0.0, # we can save memory if beta1=0 beta2=0.98, factored_second_moment_accumulator=True, # this saves memory )
Example #13
Source File: convert_tf.py From CNNArt with Apache License 2.0 | 6 votes |
def parse_withlabel_function(example_proto): time1 = time.time() features = { 'image': tf.FixedLenFeature([], tf.string), 'image_shape': tf.FixedLenFeature([], tf.string), 'image_label': tf.FixedLenFeature([], tf.string) } content = tf.parse_single_example(example_proto, features=features) content['image_shape'] = tf.decode_raw(content['image_shape'], tf.int32) content['image_label'] = tf.decode_raw(content['image_label'], tf.int16) content['image'] = tf.decode_raw(content['image'], tf.int16) content['image'] = tf.reshape(content['image'], content['image_shape']) print('parse using time: ', time.time() - time1) return content['image'], content['image_label']
Example #14
Source File: constant_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testOnesLike(self): for dtype in [tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.complex128, tf.int64]: numpy_dtype = dtype.as_numpy_dtype with self.test_session(): # Creates a tensor of non-zero values with shape 2 x 3. d = tf.constant(np.ones((2, 3), dtype=numpy_dtype), dtype=dtype) # Constructs a tensor of zeros of the same dimensions and type as "d". z_var = tf.ones_like(d) # Test that the type is correct self.assertEqual(z_var.dtype, dtype) z_value = z_var.eval() # Test that the value is correct self.assertTrue(np.array_equal(z_value, np.array([[1] * 3] * 2))) self.assertEqual([2, 3], z_var.get_shape())
Example #15
Source File: constant_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDtype(self): with self.test_session(): d = tf.fill([2, 3], 12., name="fill") self.assertEqual(d.get_shape(), [2, 3]) # Test default type for both constant size and dynamic size z = tf.ones([2, 3]) self.assertEqual(z.dtype, tf.float32) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.ones([2, 3])) z = tf.ones(tf.shape(d)) self.assertEqual(z.dtype, tf.float32) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.ones([2, 3])) # Test explicit type control for dtype in (tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.complex128, tf.int64, tf.bool): z = tf.ones([2, 3], dtype=dtype) self.assertEqual(z.dtype, dtype) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.ones([2, 3])) z = tf.ones(tf.shape(d), dtype=dtype) self.assertEqual(z.dtype, dtype) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.ones([2, 3]))
Example #16
Source File: constant_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDtype(self): with self.test_session(): d = tf.fill([2, 3], 12., name="fill") self.assertEqual(d.get_shape(), [2, 3]) # Test default type for both constant size and dynamic size z = tf.zeros([2, 3]) self.assertEqual(z.dtype, tf.float32) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.zeros([2, 3])) z = tf.zeros(tf.shape(d)) self.assertEqual(z.dtype, tf.float32) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.zeros([2, 3])) # Test explicit type control for dtype in [tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.complex128, tf.int64, tf.bool]: z = tf.zeros([2, 3], dtype=dtype) self.assertEqual(z.dtype, dtype) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.zeros([2, 3])) z = tf.zeros(tf.shape(d), dtype=dtype) self.assertEqual(z.dtype, dtype) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.zeros([2, 3]))
Example #17
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testNumpyConversion(self): self.assertIs(tf.float32, tf.as_dtype(np.float32)) self.assertIs(tf.float64, tf.as_dtype(np.float64)) self.assertIs(tf.int32, tf.as_dtype(np.int32)) self.assertIs(tf.int64, tf.as_dtype(np.int64)) self.assertIs(tf.uint8, tf.as_dtype(np.uint8)) self.assertIs(tf.uint16, tf.as_dtype(np.uint16)) self.assertIs(tf.int16, tf.as_dtype(np.int16)) self.assertIs(tf.int8, tf.as_dtype(np.int8)) self.assertIs(tf.complex64, tf.as_dtype(np.complex64)) self.assertIs(tf.complex128, tf.as_dtype(np.complex128)) self.assertIs(tf.string, tf.as_dtype(np.object)) self.assertIs(tf.string, tf.as_dtype(np.array(["foo", "bar"]).dtype)) self.assertIs(tf.bool, tf.as_dtype(np.bool)) with self.assertRaises(TypeError): tf.as_dtype(np.dtype([("f1", np.uint), ("f2", np.int32)]))
Example #18
Source File: zero_division_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testZeros(self): with self.test_session(use_gpu=True): for dtype in tf.uint8, tf.int16, tf.int32, tf.int64: zero = tf.constant(0, dtype=dtype) one = tf.constant(1, dtype=dtype) bads = [one // zero] if dtype in (tf.int32, tf.int64): bads.append(one % zero) for bad in bads: try: result = bad.eval() except tf.OpError as e: # Ideally, we'd get a nice exception. In theory, this should only # happen on CPU, but 32 bit integer GPU division is actually on # CPU due to a placer bug. # TODO(irving): Make stricter once the placer bug is fixed. self.assertIn('Integer division by zero', str(e)) else: # On the GPU, integer division by zero produces all bits set. # But apparently on some GPUs "all bits set" for 64 bit division # means 32 bits set, so we allow 0xffffffff as well. This isn't # very portable, so we may need to expand this list if other GPUs # do different things. self.assertTrue(tf.test.is_gpu_available()) self.assertIn(result, (-1, 0xff, 0xffffffff))
Example #19
Source File: diet.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def _quantize(x, params, randomize=True): """Quantize x according to params, optionally randomizing the rounding.""" if not params.quantize: return x if not randomize: return tf.bitcast( tf.cast(x / params.quantization_scale, tf.int16), tf.float16) abs_x = tf.abs(x) sign_x = tf.sign(x) y = abs_x / params.quantization_scale y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x))) y = tf.minimum(y, tf.int16.max) * sign_x q = tf.bitcast(tf.cast(y, tf.int16), tf.float16) return q
Example #20
Source File: diet.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def diet_adam_optimizer_params(): """Default hyperparameters for a DietAdamOptimizer. Returns: a hyperparameters object. """ return tf.contrib.training.HParams( quantize=True, # use 16-bit fixed-point quantization_scale=10.0 / tf.int16.max, optimizer="DietAdam", learning_rate=1.0, learning_rate_warmup_steps=2000, learning_rate_decay_scheme="noam", # "noam" or "none" epsilon=1e-10, beta1=0.0, # we can save memory if beta1=0 beta2=0.98, factored_second_moment_accumulator=True, # this saves memory )
Example #21
Source File: diet.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def _quantize(x, params, randomize=True): """Quantize x according to params, optionally randomizing the rounding.""" if not params.quantize: return x if not randomize: return tf.bitcast( tf.cast(x / params.quantization_scale, tf.int16), tf.float16) abs_x = tf.abs(x) sign_x = tf.sign(x) y = abs_x / params.quantization_scale y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x))) y = tf.minimum(y, tf.int16.max) * sign_x q = tf.bitcast(tf.cast(y, tf.int16), tf.float16) return q
Example #22
Source File: diet.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def diet_adam_optimizer_params(): """Default hyperparameters for a DietAdamOptimizer. Returns: a hyperparameters object. """ return tf.contrib.training.HParams( quantize=True, # use 16-bit fixed-point quantization_scale=10.0 / tf.int16.max, optimizer="DietAdam", learning_rate=1.0, learning_rate_warmup_steps=2000, learning_rate_decay_scheme="noam", # "noam" or "none" epsilon=1e-10, beta1=0.0, # we can save memory if beta1=0 beta2=0.98, factored_second_moment_accumulator=True, # this saves memory )
Example #23
Source File: diet.py From BERT with Apache License 2.0 | 6 votes |
def _quantize(x, params, randomize=True): """Quantize x according to params, optionally randomizing the rounding.""" if not params.quantize: return x if not randomize: return tf.bitcast( tf.cast(x / params.quantization_scale, tf.int16), tf.float16) abs_x = tf.abs(x) sign_x = tf.sign(x) y = abs_x / params.quantization_scale y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x))) y = tf.minimum(y, tf.int16.max) * sign_x q = tf.bitcast(tf.cast(y, tf.int16), tf.float16) return q
Example #24
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testIsFloating(self): self.assertEqual(tf.as_dtype("int8").is_floating, False) self.assertEqual(tf.as_dtype("int16").is_floating, False) self.assertEqual(tf.as_dtype("int32").is_floating, False) self.assertEqual(tf.as_dtype("int64").is_floating, False) self.assertEqual(tf.as_dtype("uint8").is_floating, False) self.assertEqual(tf.as_dtype("uint16").is_floating, False) self.assertEqual(tf.as_dtype("complex64").is_floating, False) self.assertEqual(tf.as_dtype("complex128").is_floating, False) self.assertEqual(tf.as_dtype("float32").is_floating, True) self.assertEqual(tf.as_dtype("float64").is_floating, True) self.assertEqual(tf.as_dtype("string").is_floating, False) self.assertEqual(tf.as_dtype("bool").is_floating, False) self.assertEqual(tf.as_dtype("bfloat16").is_integer, False)
Example #25
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testIsComplex(self): self.assertEqual(tf.as_dtype("int8").is_complex, False) self.assertEqual(tf.as_dtype("int16").is_complex, False) self.assertEqual(tf.as_dtype("int32").is_complex, False) self.assertEqual(tf.as_dtype("int64").is_complex, False) self.assertEqual(tf.as_dtype("uint8").is_complex, False) self.assertEqual(tf.as_dtype("uint16").is_complex, False) self.assertEqual(tf.as_dtype("complex64").is_complex, True) self.assertEqual(tf.as_dtype("complex128").is_complex, True) self.assertEqual(tf.as_dtype("float32").is_complex, False) self.assertEqual(tf.as_dtype("float64").is_complex, False) self.assertEqual(tf.as_dtype("string").is_complex, False) self.assertEqual(tf.as_dtype("bool").is_complex, False) self.assertEqual(tf.as_dtype("bfloat16").is_integer, False)
Example #26
Source File: tfr_data_provider.py From segmentation_uncertainty with MIT License | 5 votes |
def _remove_subj_tp(self, subj, tp, img, label): img = tf.decode_raw(img, tf.float32) label = tf.cast(tf.decode_raw(label, tf.int16), tf.float32) # hard coded shape because the images are a fixed size img = tf.reshape(img, tf.stack([4, 60, 256, 256])) label = tf.reshape(label, tf.stack([1, 60, 256, 256])) img = self._process_data(img) label = self._process_data(label) return img, label
Example #27
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testIntTypesWithImplicitRepeat(self): for dtype, nptype in [ (tf.int64, np.int64), (tf.int32, np.int32), (tf.uint8, np.uint8), (tf.uint16, np.uint16), (tf.int16, np.int16), (tf.int8, np.int8)]: t = tensor_util.make_tensor_proto([10], shape=[3, 4], dtype=dtype) a = tensor_util.MakeNdarray(t) self.assertAllEqual(np.array([[10, 10, 10, 10], [10, 10, 10, 10], [10, 10, 10, 10]], dtype=nptype), a)
Example #28
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_right_shift(): _test_forward_right_shift((7,), 'int32') _test_forward_right_shift((3, 11), 'int16')
Example #29
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_unpack(): _test_forward_unpack((3,), 0, 'int32') _test_forward_unpack((3,), -1, 'int16') _test_forward_unpack((21, 23, 3), 2, 'float32') ####################################################################### # Range # -----
Example #30
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testStringConversion(self): self.assertIs(tf.float32, tf.as_dtype("float32")) self.assertIs(tf.float64, tf.as_dtype("float64")) self.assertIs(tf.int32, tf.as_dtype("int32")) self.assertIs(tf.uint8, tf.as_dtype("uint8")) self.assertIs(tf.uint16, tf.as_dtype("uint16")) self.assertIs(tf.int16, tf.as_dtype("int16")) self.assertIs(tf.int8, tf.as_dtype("int8")) self.assertIs(tf.string, tf.as_dtype("string")) self.assertIs(tf.complex64, tf.as_dtype("complex64")) self.assertIs(tf.complex128, tf.as_dtype("complex128")) self.assertIs(tf.int64, tf.as_dtype("int64")) self.assertIs(tf.bool, tf.as_dtype("bool")) self.assertIs(tf.qint8, tf.as_dtype("qint8")) self.assertIs(tf.quint8, tf.as_dtype("quint8")) self.assertIs(tf.qint32, tf.as_dtype("qint32")) self.assertIs(tf.bfloat16, tf.as_dtype("bfloat16")) self.assertIs(tf.float32_ref, tf.as_dtype("float32_ref")) self.assertIs(tf.float64_ref, tf.as_dtype("float64_ref")) self.assertIs(tf.int32_ref, tf.as_dtype("int32_ref")) self.assertIs(tf.uint8_ref, tf.as_dtype("uint8_ref")) self.assertIs(tf.int16_ref, tf.as_dtype("int16_ref")) self.assertIs(tf.int8_ref, tf.as_dtype("int8_ref")) self.assertIs(tf.string_ref, tf.as_dtype("string_ref")) self.assertIs(tf.complex64_ref, tf.as_dtype("complex64_ref")) self.assertIs(tf.complex128_ref, tf.as_dtype("complex128_ref")) self.assertIs(tf.int64_ref, tf.as_dtype("int64_ref")) self.assertIs(tf.bool_ref, tf.as_dtype("bool_ref")) self.assertIs(tf.qint8_ref, tf.as_dtype("qint8_ref")) self.assertIs(tf.quint8_ref, tf.as_dtype("quint8_ref")) self.assertIs(tf.qint32_ref, tf.as_dtype("qint32_ref")) self.assertIs(tf.bfloat16_ref, tf.as_dtype("bfloat16_ref")) with self.assertRaises(TypeError): tf.as_dtype("not_a_type")