Python tensorflow.inv() Examples
The following are 9
code examples of tensorflow.inv().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: videosr_ops_lite.py From SPMC_VideoSR with MIT License | 6 votes |
def ycbcr2rgb(inputs): with tf.name_scope('ycbcr2rgb'): if inputs.get_shape()[-1].value == 1: return inputs assert inputs.get_shape()[-1].value == 3, 'Error: rgb2ycbcr input should be RGB or grayscale!' ndims = len(inputs.get_shape()) # origT = np.array([[65.481, 128.553, 24.966], [-37.797 -74.203 112], [112 -93.786 -18.214]]) # T = tf.inv(origT) Tinv = [[0.00456621, 0., 0.00625893], [0.00456621, -0.00153632, -0.00318811], [0.00456621, 0.00791071, 0.]] origOffset = [16.0, 128.0, 128.0] if ndims == 4: origT = [tf.reshape(Tinv[i], [1, 1, 1, 3]) * 255.0 for i in xrange(3)] origOffset = tf.reshape(origOffset, [1, 1, 1, 3]) / 255.0 elif ndims == 5: origT = [tf.reshape(Tinv[i], [1, 1, 1, 1, 3]) * 255.0 for i in xrange(3)] origOffset = tf.reshape(origOffset, [1, 1, 1, 1, 3]) / 255.0 output = [] for i in xrange(3): output.append(tf.reduce_sum((inputs - origOffset) * origT[i], reduction_indices=-1, keep_dims=True)) return tf.concat(output, -1)
Example #2
Source File: videosr_ops.py From PFNL with MIT License | 6 votes |
def ycbcr2rgb(inputs): with tf.name_scope('ycbcr2rgb'): if inputs.get_shape()[-1].value == 1: return inputs assert inputs.get_shape()[-1].value == 3, 'Error: rgb2ycbcr input should be RGB or grayscale!' ndims = len(inputs.get_shape()) # origT = np.array([[65.481, 128.553, 24.966], [-37.797 -74.203 112], [112 -93.786 -18.214]]) # T = tf.inv(origT) Tinv = [[0.00456621, 0., 0.00625893], [0.00456621, -0.00153632, -0.00318811], [0.00456621, 0.00791071, 0.]] origOffset = [16.0, 128.0, 128.0] if ndims == 4: origT = [tf.reshape(Tinv[i], [1, 1, 1, 3]) * 255.0 for i in range(3)] origOffset = tf.reshape(origOffset, [1, 1, 1, 3]) / 255.0 elif ndims == 5: origT = [tf.reshape(Tinv[i], [1, 1, 1, 1, 3]) * 255.0 for i in range(3)] origOffset = tf.reshape(origOffset, [1, 1, 1, 1, 3]) / 255.0 output = [] for i in range(3): output.append(tf.reduce_sum((inputs - origOffset) * origT[i], reduction_indices=-1, keep_dims=True)) return tf.concat(output, -1)
Example #3
Source File: ops.py From tfdeploy with MIT License | 5 votes |
def test_Inv(self): if td._tf_version[:2] <= (0, 11): t = tf.inv(self.random(4, 3)) self.check(t)
Example #4
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFloatBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32) y = (x + .5).astype(np.float32) # no zero z = (x + 15.5).astype(np.float32) # all positive k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1 self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(z, np.log1p, tf.log1p) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth(k, np.arcsin, tf.asin) self._compareBoth(k, np.arccos, tf.acos) self._compareBoth(x, np.arctan, tf.atan) self._compareBoth(x, np.tan, tf.tan) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
Example #5
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFloatEmpty(self): x = np.empty((2, 0, 5), dtype=np.float32) self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(x, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(x, np.sqrt, tf.sqrt) self._compareBoth(x, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(x, np.log, tf.log) self._compareBoth(x, np.log1p, tf.log1p) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(x, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) # Can't use vectorize below, so just use some arbitrary function self._compareBoth(x, np.sign, tf.lgamma) self._compareBoth(x, np.sign, tf.erf) self._compareBoth(x, np.sign, tf.erfc) self._compareBoth(x, np.tan, tf.tan) self._compareBoth(x, np.arcsin, tf.asin) self._compareBoth(x, np.arccos, tf.acos) self._compareBoth(x, np.arctan, tf.atan) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(x, np.sign, tf.sign) self._compareBothSparse(x, np.sign, tf.erf)
Example #6
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testDoubleBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float64) y = (x + .5).astype(np.float64) # no zero z = (x + 15.5).astype(np.float64) # all positive k = np.arange(-0.90, 0.90, 0.35).reshape(1, 3, 2).astype(np.float64) # between -1 and 1 self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(z, np.log1p, tf.log1p) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBoth(x, np.arctan, tf.atan) self._compareBoth(k, np.arcsin, tf.asin) self._compareBoth(k, np.arccos, tf.acos) self._compareBoth(k, np.tan, tf.tan) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
Example #7
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testHalfBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float16) y = (x + .5).astype(np.float16) # no zero z = (x + 15.5).astype(np.float16) # all positive self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(z, np.log1p, tf.log1p) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf, tol=1e-3)
Example #8
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testComplex64Basic(self): x = np.complex(1, 1) * np.arange(-3, 3).reshape(1, 3, 2).astype( np.complex64) y = x + 0.5 # no zeros self._compareCpu(x, np.abs, tf.complex_abs) self._compareCpu(x, np.abs, _ABS) self._compareCpu(x, np.negative, tf.neg) self._compareCpu(x, np.negative, _NEG) self._compareCpu(y, self._inv, tf.inv) self._compareCpu(x, np.square, tf.square) self._compareCpu(y, np.sqrt, tf.sqrt) self._compareCpu(y, self._rsqrt, tf.rsqrt) self._compareCpu(x, np.exp, tf.exp) self._compareCpu(y, np.log, tf.log) self._compareCpu(y, np.log1p, tf.log1p) self._compareCpu(x, np.tanh, tf.tanh) self._compareCpu(x, self._sigmoid, tf.sigmoid) self._compareCpu(x, np.sin, tf.sin) self._compareCpu(x, np.cos, tf.cos) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sqrt, tf.sqrt, 1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) # Numpy uses an incorrect definition of sign; use the right one instead. def complex_sign(x): return x / np.abs(x) self._compareCpu(y, complex_sign, tf.sign) self._compareBothSparse(y, complex_sign, tf.sign)
Example #9
Source File: custom_patch.py From tensorbuilder with MIT License | 4 votes |
def drop_layer(x, keep_prob, seed=None, name=None): """Computes dropout. With probability `keep_prob`, outputs the input element scaled up by `1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected sum is unchanged. Args: x: A tensor. keep_prob: A scalar `Tensor` with the same type as x. The probability that each element is kept. noise_shape: A 1-D `Tensor` of type `int32`, representing the shape for randomly generated keep/drop flags. seed: A Python integer. Used to create random seeds. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. name: A name for this operation (optional). Returns: A Tensor of the same shape of `x`. Raises: ValueError: If `keep_prob` is not in `(0, 1]`. """ with tf.op_scope([x], name, "drop_layer") as name: x = tf.convert_to_tensor(x, name="x") if isinstance(keep_prob, float) and not 0 < keep_prob <= 1: raise ValueError("keep_prob must be a scalar tensor or a float in the " "range (0, 1], got %g" % keep_prob) keep_prob = tf.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob") keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar()) noise_shape = [ tf.shape(x)[0], 1 ] # uniform [keep_prob, 1.0 + keep_prob) random_tensor = keep_prob random_tensor += tf.random_uniform( noise_shape, seed=seed, dtype=x.dtype ) # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob) binary_tensor = tf.floor(random_tensor) ret = x * tf.inv(keep_prob) * binary_tensor ret.set_shape(x.get_shape()) return ret