Python tensorflow.RunOptions() Examples
The following are 30
code examples of tensorflow.RunOptions().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: trainer.py From dvae with Apache License 2.0 | 7 votes |
def optimize(self, data, with_metrics=False, with_trace=False): """ Optimize a single batch """ run_metadata = tf.RunMetadata() if with_trace else None trace = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) if with_trace else None _, metrics = self.run( self.training_operation, data, run_options=trace, run_metadata=run_metadata) if with_metrics: self.timer_update() steps, elapsed = self.elapsed() num_devices = len(self.towers) examples = steps * self.batch_size * num_devices print('Step {}, examples/sec {:.3f}, ms/batch {:.1f}'.format( self.global_step, examples / elapsed, 1000 * elapsed / num_devices)) self.output_metrics(data, metrics) self.write_summaries(data) if with_trace: step = '{}/step{}'.format(self.name, self.global_step) self.summary_writer.add_run_metadata(run_metadata, step, global_step=self.global_step)
Example #2
Source File: stt.py From rnn-speech with MIT License | 6 votes |
def configure_tf_session(xla, timeline): # Configure tensorflow's session config = tf.ConfigProto() jit_level = 0 if xla: # Turns on XLA JIT compilation. jit_level = tf.OptimizerOptions.ON_1 config.graph_options.optimizer_options.global_jit_level = jit_level run_metadata = tf.RunMetadata() # Add timeline data generation options if needed if timeline is True: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) else: run_options = None return config, run_metadata, run_options
Example #3
Source File: DCSCN.py From dcscn-super-resolution with MIT License | 6 votes |
def log_model_analysis(self): run_metadata = tf.RunMetadata() run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) _, loss = self.sess.run([self.optimizer, self.loss], feed_dict={self.x: self.batch_input, self.x2: self.batch_input_bicubic, self.y: self.batch_true, self.lr_input: self.lr, self.dropout: self.dropout_rate}, options=run_options, run_metadata=run_metadata) # tf.contrib.tfprof.model_analyzer.print_model_analysis( # tf.get_default_graph(), # run_meta=run_metadata, # tfprof_options=tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY) self.first_training = False
Example #4
Source File: tf_distributions.py From MJHMC with GNU General Public License v2.0 | 6 votes |
def E_val(self, X): with self.graph.as_default(), tf.device(self.energy_device): if self.prof_run: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() energy = self.sess.run(self.energy_op, feed_dict={self.state_pl: X}, options=run_options, run_metadata=run_metadata) tf_tl = timeline.Timeline(run_metadata.step_stats) ctf = tf_tl.generate_chrome_trace_format() log_path = expanduser('~/tmp/logs/tf_{}_energy_timeline_{}.json'.format(self.name, time.time())) with open(log_path, 'w') as log_file: log_file.write(ctf) else: energy = self.sess.run(self.energy_op, feed_dict={self.state_pl: X}) return energy
Example #5
Source File: tf_distributions.py From MJHMC with GNU General Public License v2.0 | 6 votes |
def dEdX_val(self, X): with self.graph.as_default(), tf.device(self.grad_device): if self.prof_run: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() grad = self.sess.run(self.grad_op, feed_dict={self.state_pl: X}, options=run_options, run_metadata=run_metadata) tf_tl = timeline.Timeline(run_metadata.step_stats) ctf = tf_tl.generate_chrome_trace_format() log_path = expanduser('~/tmp/logs/tf_{}_grad_timeline_{}.json'.format(self.name, time.time())) with open(log_path, 'w') as log_file: log_file.write(ctf) else: grad = self.sess.run(self.grad_op, feed_dict={self.state_pl: X}) return grad
Example #6
Source File: test_util.py From in-silico-labeling with Apache License 2.0 | 6 votes |
def profile(self, tensors: List[Union[tf.Tensor, tf.Operation, lt.LabeledTensor]]): tensors = [ t.tensor if isinstance(t, lt.LabeledTensor) else t for t in tensors ] run_metadata = tf.RunMetadata() sv = tf.train.Supervisor(graph=tensors[0].graph) sess = sv.PrepareSession() sv.StartQueueRunners(sess) results = sess.run( tensors, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata=run_metadata) options = tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY options['viz'] = True tf.contrib.tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), run_meta=run_metadata, tfprof_options=options) sv.Stop() return results
Example #7
Source File: test_single_threaded_logging.py From delira with GNU Affero General Public License v3.0 | 6 votes |
def test_graph_tf(self): run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() with tf.Session() as sess: outputs = self._model_tf( np.zeros( shape=( 1, 28, 28, 1), dtype=np.float32)) sess.run(tf.initializers.global_variables()) sess.run(outputs, options=run_options, run_metadata=run_metadata) self._logger.log({"graph_tf": { "graph": self._model_tf._graph.as_graph_def(add_shapes=True), "run_metadata": run_metadata }})
Example #8
Source File: profile.py From lang2program with Apache License 2.0 | 6 votes |
def run(self, fetches, feed_dict=None): """like Session.run, but return a Timeline object in Chrome trace format (JSON). Save the json to a file, go to chrome://tracing, and open the file. Args: fetches feed_dict Returns: dict: a JSON dict """ options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata) # Create the Timeline object, and write it to a json tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() return json.loads(ctf)
Example #9
Source File: profile.py From lang2program with Apache License 2.0 | 6 votes |
def run(self, fetches, feed_dict=None): """like Session.run, but return a Timeline object in Chrome trace format (JSON). Save the json to a file, go to chrome://tracing, and open the file. Args: fetches feed_dict Returns: dict: a JSON dict """ options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata) # Create the Timeline object, and write it to a json tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() return json.loads(ctf)
Example #10
Source File: fifo_queue_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testReusableAfterTimeout(self): with self.test_session() as sess: q = tf.FIFOQueue(10, tf.float32) dequeued_t = q.dequeue() enqueue_op = q.enqueue(37) with self.assertRaisesRegexp(tf.errors.DeadlineExceededError, "Timed out waiting for notification"): sess.run(dequeued_t, options=tf.RunOptions(timeout_in_ms=10)) with self.assertRaisesRegexp(tf.errors.DeadlineExceededError, "Timed out waiting for notification"): sess.run(dequeued_t, options=tf.RunOptions(timeout_in_ms=10)) sess.run(enqueue_op) self.assertEqual(37, sess.run(dequeued_t))
Example #11
Source File: cli.py From mayo with MIT License | 6 votes |
def cli_profile_timeline(self): """Performs training profiling to produce timeline.json. """ # TODO integrate this into Profile. from tensorflow.python.client import timeline options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() session = self._get_session('train') # run 100 iterations to warm up max_iterations = 100 for i in range(max_iterations): log.info( 'Running {}/{} iterations to warm up...' .format(i, max_iterations), update=True) session.run(session._train_op) log.info('Running the final iteration to generate timeline...') session.run( session._train_op, options=options, run_metadata=run_metadata) fetched_timeline = timeline.Timeline(run_metadata.step_stats) chrome_trace = fetched_timeline.generate_chrome_trace_format() with open('timeline.json', 'w') as f: f.write(chrome_trace)
Example #12
Source File: avsr.py From avsr-tf1 with GNU General Public License v3.0 | 6 votes |
def _create_sessions(self): config = tf.ConfigProto(allow_soft_placement=True) if 'train' in self._required_graphs: self._train_session = tf.Session(graph=self._train_graph, config=config) if 'eval' in self._required_graphs: self._evaluate_session = tf.Session(graph=self._evaluate_graph, config=config) # self._predict_session = tf.Session(graph=self._predict_graph, config=config) if self._hparams.profiling is True: from tensorflow.profiler import Profiler self.profiler = Profiler(self._train_session.graph) self.run_meta = tf.RunMetadata() makedirs('/tmp/timelines/', exist_ok=True) self.sess_opts = { 'options': tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), 'run_metadata': self.run_meta } else: self.sess_opts = {}
Example #13
Source File: train.py From GraphSAINT with MIT License | 6 votes |
def evaluate_full_batch(sess,model,minibatch_iter,many_runs_timeline,mode): """ Full batch evaluation NOTE: HERE GCN RUNS THROUGH THE FULL GRAPH. HOWEVER, WE CALCULATE F1 SCORE FOR VALIDATION / TEST NODES ONLY. """ options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() t1 = time.time() num_cls = minibatch_iter.class_arr.shape[-1] feed_dict, labels = minibatch_iter.feed_dict(mode) if args_global.timeline: preds,loss = sess.run([model.preds, model.loss], feed_dict=feed_dict, options=options, run_metadata=run_metadata) fetched_timeline = timeline.Timeline(run_metadata.step_stats) chrome_trace = fetched_timeline.generate_chrome_trace_format() many_runs_timeline.append(chrome_trace) else: preds,loss = sess.run([model.preds, model.loss], feed_dict=feed_dict) node_val_test = minibatch_iter.node_val if mode=='val' else minibatch_iter.node_test t2 = time.time() f1_scores = calc_f1(labels[node_val_test],preds[node_val_test],model.sigmoid_loss) return loss, f1_scores[0], f1_scores[1], (t2-t1)
Example #14
Source File: model.py From realtime_object_detection with MIT License | 6 votes |
def __init__(self,config): self.config = config self.detection_graph = tf.Graph() self.category_index = None self.masks = None self._tf_config = tf.ConfigProto(allow_soft_placement=True) self._tf_config.gpu_options.allow_growth=True #self._tf_config.gpu_options.force_gpu_compatible=True #self._tf_config.gpu_options.per_process_gpu_memory_fraction = 0.01 self._run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE) self._run_metadata = False self._wait_thread = False self._is_imageD = False self._is_videoD = False self._is_rosD = False print ('> Model: {}'.format(self.config.MODEL_PATH))
Example #15
Source File: tfprof_logger_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testFillMissingShape(self): a, b, y = self._BuildSmallPlaceholderlModel() run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() sess = tf.Session() sess.run(y, options=run_options, run_metadata=run_metadata, feed_dict={a: [[1, 2], [2, 3]], b: [[1, 2], [2, 3]]}) graph2 = tf.Graph() # Use copy_op_to_graph to remove shape information. y2 = tf.contrib.copy_graph.copy_op_to_graph(y, graph2, []) self.assertEquals('<unknown>', str(y2.get_shape())) tf.contrib.tfprof.tfprof_logger._fill_missing_graph_shape(graph2, run_metadata) self.assertEquals('(2, 2)', str(y2.get_shape()))
Example #16
Source File: model_seq2seq.py From tensorflow-chatbot-chinese with MIT License | 6 votes |
def train(self, sess, batch, print_pred, summary_writer, add_global, prob): feed_dict = {self.encoder_inputs: batch.encoder_inputs, self.encoder_inputs_length: batch.encoder_inputs_length, self.decoder_targets: batch.decoder_targets, self.decoder_targets_length: batch.decoder_targets_length, self.batch_size: len(batch.encoder_inputs), self.sampling_prob: prob} if print_pred: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) _, loss, pred, summary, current_step, print_lr = sess.run([self.train_op, self.train_loss, self.decoder_predict_train, self.train_summary, add_global, self.lr], feed_dict=feed_dict, options=run_options) i = np.random.randint(0, len(batch.encoder_inputs)) util.decoder_print(self.idx2word, batch.encoder_inputs[i], batch.encoder_inputs_length[i], batch.decoder_targets[i], batch.decoder_targets_length[i], pred[i], 'yellow') summary_writer.add_summary(summary, global_step=current_step) else: _, loss, current_step, print_lr = sess.run([self.train_op, self.train_loss, add_global, self.lr], feed_dict=feed_dict) return loss, calc_perplexity(loss), current_step, print_lr
Example #17
Source File: util.py From am3 with Apache License 2.0 | 6 votes |
def profiled_run(sess, ops, feed_dict, is_profiling=False, log_dir=None): if not is_profiling: return sess.run(ops, feed_dict=feed_dict) else: if log_dir is None: raise ValueError("You need to provide a log_dir for profiling.") run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() outputs = sess.run(ops, feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) # Create the Timeline object, and write it to a json tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() with open(os.path.join(log_dir, 'timeline.json'), 'w') as f: f.write(ctf) return outputs
Example #18
Source File: prof.py From ADL with MIT License | 5 votes |
def _before_run(self, _): opt = tf.RunOptions() opt.trace_level = tf.RunOptions.FULL_TRACE return tf.train.SessionRunArgs(fetches=None, options=opt)
Example #19
Source File: tucker.py From tensorD with MIT License | 5 votes |
def train(self, steps=None): """ Parameters ---------- steps : Ignore Returns ------- """ self._is_train_finish = False sess = self._env.sess sum_op = tf.summary.merge_all() sum_writer = tf.summary.FileWriter(self._env.summary_path, sess.graph) sess.run(self._init_op, feed_dict=self._feed_dict) print('HOSVD model initial finish') run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() loss_v, self._full_tensor, self._factors, self._core, sum_msg = sess.run( [self._loss_op, self._full_op, self._factor_update_op, self._core_op, sum_op], feed_dict=self._feed_dict, options=run_options, run_metadata=run_metadata) sum_writer.add_run_metadata(run_metadata, 'step1') sum_writer.add_summary(sum_msg, 1) print('HOSVD model train finish, with RMSE = %f' % loss_v) self._is_train_finish = True
Example #20
Source File: hooks.py From natural-language-summary-generation-from-structured-data with MIT License | 5 votes |
def before_run(self, _run_context): if not self.is_chief or self._done: return if not self._active: return tf.train.SessionRunArgs(self._global_step) else: tf.logging.info("Performing full trace on next step.") run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101 return tf.train.SessionRunArgs(self._global_step, options=run_options)
Example #21
Source File: profile_session_run_hooks.py From aster with MIT License | 5 votes |
def before_run(self, run_context): # pylint: disable=unused-argument if self._do_profile: options = tf.RunOptions(trace_level=self._trace_level) else: options = None return tf.train.SessionRunArgs(self._global_step_tensor, options=options)
Example #22
Source File: base.py From petridishnn with MIT License | 5 votes |
def _do_call(self, dp): assert len(dp) == len(self.input_tensors), \ "{} != {}".format(len(dp), len(self.input_tensors)) if self.sess is None: self.sess = tf.get_default_session() assert self.sess is not None, "Predictor isn't called under a default session!" if self._callable is None: self._callable = self.sess.make_callable( fetches=self.output_tensors, feed_list=self.input_tensors, accept_options=self.ACCEPT_OPTIONS) # run_metadata = tf.RunMetadata() # options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) return self._callable(*dp)
Example #23
Source File: hooks.py From ctc-asr with MIT License | 5 votes |
def __init__(self, file_writer, log_frequency, trace_level=tf.RunOptions.FULL_TRACE): self._trace = log_frequency == 1 self.writer = file_writer self.trace_level = trace_level self.log_frequency = log_frequency self._global_step_tensor = None
Example #24
Source File: hooks.py From ctc-asr with MIT License | 5 votes |
def before_run(self, run_context): if self._trace: options = tf.RunOptions(trace_level=self.trace_level) else: options = None return tf.train.SessionRunArgs(fetches=self._global_step_tensor, options=options)
Example #25
Source File: staffline_patches_dofn.py From moonlight with Apache License 2.0 | 5 votes |
def start_bundle(self): self.extractor = staffline_extractor.StafflinePatchExtractor( patch_height=self.patch_height, patch_width=self.patch_width, run_options=tf.RunOptions(timeout_in_ms=self.timeout_ms)) self.session = tf.Session(graph=self.extractor.graph)
Example #26
Source File: train.py From imgcomp-cvpr with GNU General Public License v3.0 | 5 votes |
def run_and_fetch_metadata(fetches, sess): print('*** Adding metadata...') run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() return sess.run(fetches, options=run_options, run_metadata=run_metadata), run_metadata
Example #27
Source File: trainer.py From VDAIC2017 with MIT License | 5 votes |
def run_step(self): """ Simply run self.train_op""" self.sess.run(self.train_op) #run_metadata = tf.RunMetadata() #self.sess.run([self.train_op], #options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), #run_metadata=run_metadata #) #from tensorflow.python.client import timeline #trace = timeline.Timeline(step_stats=run_metadata.step_stats) #trace_file = open('timeline.ctf.json', 'w') #trace_file.write(trace.generate_chrome_trace_format()) #import sys; sys.exit()
Example #28
Source File: mnist_correctness_test.py From gradient-checkpointing with MIT License | 5 votes |
def sessrun(*args, **kwargs): global sess, run_metadata if not GLOBAL_PROFILE: return sess.run(*args, **kwargs) run_metadata = tf.RunMetadata() kwargs['options'] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) kwargs['run_metadata'] = run_metadata result = sess.run(*args, **kwargs) first_entry = args[0] if isinstance(first_entry, list): if len(first_entry) == 0 and len(args) == 1: return None first_entry = first_entry[0] if DUMP_TIMELINES: name = first_entry.name name = name.replace('/', '-') tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() with open('timelines/%s.json'%(name,), 'w') as f: f.write(ctf) with open('timelines/%s.pbtxt'%(name,), 'w') as f: f.write(str(run_metadata)) return result
Example #29
Source File: deep_resnet_benchmark.py From gradient-checkpointing with MIT License | 5 votes |
def sessrun(*args, **kwargs): global sess, run_metadata if not GLOBAL_PROFILE: return sess.run(*args, **kwargs) run_metadata = tf.RunMetadata() kwargs['options'] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) kwargs['run_metadata'] = run_metadata result = sess.run(*args, **kwargs) first_entry = args[0] if isinstance(first_entry, list): if len(first_entry) == 0 and len(args) == 1: return None first_entry = first_entry[0] if DUMP_TIMELINES: name = first_entry.name name = name.replace('/', '-') tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() with open('timelines/%s.json'%(name,), 'w') as f: f.write(ctf) with open('timelines/%s.pbtxt'%(name,), 'w') as f: f.write(str(run_metadata)) return result
Example #30
Source File: deep_imagenet_benchmark.py From gradient-checkpointing with MIT License | 5 votes |
def sessrun(*args, **kwargs): global sess, run_metadata if not GLOBAL_PROFILE: return sess.run(*args, **kwargs) run_metadata = tf.RunMetadata() kwargs['options'] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) kwargs['run_metadata'] = run_metadata result = sess.run(*args, **kwargs) first_entry = args[0] if isinstance(first_entry, list): if len(first_entry) == 0 and len(args) == 1: return None first_entry = first_entry[0] if DUMP_TIMELINES: name = first_entry.name name = name.replace('/', '-') tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() with open('timelines/%s.json'%(name,), 'w') as f: f.write(ctf) with open('timelines/%s.pbtxt'%(name,), 'w') as f: f.write(str(run_metadata)) return result