Python resnet_model.HParams() Examples
The following are 13
code examples of resnet_model.HParams().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
resnet_model
, or try the search function
.
Example #1
Source File: resnet_main.py From DOTA_models with Apache License 2.0 | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #2
Source File: resnet_main.py From yolo_v2 with Apache License 2.0 | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #3
Source File: resnet_main.py From Gun-Detector with Apache License 2.0 | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #4
Source File: resnet_main.py From deeplearning-benchmark with Apache License 2.0 | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') # with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #5
Source File: resnet_main.py From Action_Recognition_Zoo with MIT License | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #6
Source File: resnet_main.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #7
Source File: resnet_main.py From hands-detection with MIT License | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #8
Source File: resnet_main.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #9
Source File: resnet_main.py From object_detection_with_tensorflow with MIT License | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #10
Source File: resnet_main.py From HumanRecognition with MIT License | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #11
Source File: resnet_main.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #12
Source File: resnet_main.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def main(_): if FLAGS.num_gpus == 0: dev = '/cpu:0' elif FLAGS.num_gpus == 1: dev = '/gpu:0' else: raise ValueError('Only support 0 or 1 gpu.') if FLAGS.mode == 'train': batch_size = 128 elif FLAGS.mode == 'eval': batch_size = 100 if FLAGS.dataset == 'cifar10': num_classes = 10 elif FLAGS.dataset == 'cifar100': num_classes = 100 hps = resnet_model.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=0.0001, lrn_rate=0.1, num_residual_units=5, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') with tf.device(dev): if FLAGS.mode == 'train': train(hps) elif FLAGS.mode == 'eval': evaluate(hps)
Example #13
Source File: cifar_eval.py From mentornet with Apache License 2.0 | 4 votes |
def eval_resnet(): """Evaluates the resnet model.""" if not os.path.exists(FLAGS.eval_dir): os.makedirs(FLAGS.eval_dir) g = tf.Graph() with g.as_default(): # pylint: disable=line-too-long images, one_hot_labels, num_samples, num_of_classes = cifar_data_provider.provide_resnet_data( FLAGS.dataset_name, FLAGS.split_name, FLAGS.batch_size, dataset_dir=FLAGS.data_dir, num_epochs=None) hps = resnet_model.HParams( batch_size=FLAGS.batch_size, num_classes=num_of_classes, min_lrn_rate=0.0001, lrn_rate=0, num_residual_units=9, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') # Define the model: images.set_shape([FLAGS.batch_size, 32, 32, 3]) resnet = resnet_model.ResNet(hps, images, one_hot_labels, mode='test') logits = resnet.build_model() total_loss = tf.nn.softmax_cross_entropy_with_logits( labels=one_hot_labels, logits=logits) total_loss = tf.reduce_mean(total_loss, name='xent') slim.summaries.add_scalar_summary( total_loss, 'total_loss', print_summary=True) # Define the metrics: predictions = tf.argmax(logits, 1) labels = tf.argmax(one_hot_labels, 1) names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({ 'accuracy': tf.metrics.accuracy(predictions, labels), }) for name, value in names_to_values.iteritems(): slim.summaries.add_scalar_summary( value, name, prefix='eval', print_summary=True) # This ensures that we make a single pass over all of the data. num_batches = math.ceil(num_samples / float(FLAGS.batch_size)) slim.evaluation.evaluation_loop( master=FLAGS.master, checkpoint_dir=FLAGS.checkpoint_dir, logdir=FLAGS.eval_dir, num_evals=num_batches, eval_op=names_to_updates.values(), eval_interval_secs=FLAGS.eval_interval_secs)