Python resnet_model.ResNet() Examples
The following are 17
code examples of resnet_model.ResNet().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
resnet_model
, or try the search function
.
Example #1
Source File: resnet_utils.py From YellowFin with Apache License 2.0 | 5 votes |
def get_model(hps, dataset, train_data_path, mode='train'): images, labels = cifar_input.build_input( dataset, train_data_path, hps.batch_size, mode) model = resnet_model.ResNet(hps, images, labels, mode) model.build_graph() return model
Example #2
Source File: resnet_main.py From multilabel-image-classification-tensorflow with MIT License | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)
Example #3
Source File: resnet_main.py From DOTA_models with Apache License 2.0 | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)
Example #4
Source File: resnet_main.py From g-tensorflow-models with Apache License 2.0 | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)
Example #5
Source File: resnet_main.py From HumanRecognition with MIT License | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)
Example #6
Source File: resnet_main.py From object_detection_with_tensorflow with MIT License | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)
Example #7
Source File: resnet_main.py From object_detection_kitti with Apache License 2.0 | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)
Example #8
Source File: cifar_eval.py From mentornet with Apache License 2.0 | 4 votes |
def eval_resnet(): """Evaluates the resnet model.""" if not os.path.exists(FLAGS.eval_dir): os.makedirs(FLAGS.eval_dir) g = tf.Graph() with g.as_default(): # pylint: disable=line-too-long images, one_hot_labels, num_samples, num_of_classes = cifar_data_provider.provide_resnet_data( FLAGS.dataset_name, FLAGS.split_name, FLAGS.batch_size, dataset_dir=FLAGS.data_dir, num_epochs=None) hps = resnet_model.HParams( batch_size=FLAGS.batch_size, num_classes=num_of_classes, min_lrn_rate=0.0001, lrn_rate=0, num_residual_units=9, use_bottleneck=False, weight_decay_rate=0.0002, relu_leakiness=0.1, optimizer='mom') # Define the model: images.set_shape([FLAGS.batch_size, 32, 32, 3]) resnet = resnet_model.ResNet(hps, images, one_hot_labels, mode='test') logits = resnet.build_model() total_loss = tf.nn.softmax_cross_entropy_with_logits( labels=one_hot_labels, logits=logits) total_loss = tf.reduce_mean(total_loss, name='xent') slim.summaries.add_scalar_summary( total_loss, 'total_loss', print_summary=True) # Define the metrics: predictions = tf.argmax(logits, 1) labels = tf.argmax(one_hot_labels, 1) names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({ 'accuracy': tf.metrics.accuracy(predictions, labels), }) for name, value in names_to_values.iteritems(): slim.summaries.add_scalar_summary( value, name, prefix='eval', print_summary=True) # This ensures that we make a single pass over all of the data. num_batches = math.ceil(num_samples / float(FLAGS.batch_size)) slim.evaluation.evaluation_loop( master=FLAGS.master, checkpoint_dir=FLAGS.checkpoint_dir, logdir=FLAGS.eval_dir, num_evals=num_batches, eval_op=names_to_updates.values(), eval_interval_secs=FLAGS.eval_interval_secs)
Example #9
Source File: resnet_main.py From hands-detection with MIT License | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)
Example #10
Source File: resnet_main.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: time.sleep(60) try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in xrange(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f\n' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break
Example #11
Source File: resnet_main.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 4 votes |
def train(hps): """Training loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.train_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() summary_writer = tf.train.SummaryWriter(FLAGS.train_dir) sv = tf.train.Supervisor(logdir=FLAGS.log_root, is_chief=True, summary_op=None, save_summaries_secs=60, save_model_secs=300, global_step=model.global_step) sess = sv.prepare_or_wait_for_session( config=tf.ConfigProto(allow_soft_placement=True)) step = 0 lrn_rate = 0.1 while not sv.should_stop(): (_, summaries, loss, predictions, truth, train_step) = sess.run( [model.train_op, model.summaries, model.cost, model.predictions, model.labels, model.global_step], feed_dict={model.lrn_rate: lrn_rate}) if train_step < 40000: lrn_rate = 0.1 elif train_step < 60000: lrn_rate = 0.01 elif train_step < 80000: lrn_rate = 0.001 else: lrn_rate = 0.0001 truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) precision = np.mean(truth == predictions) step += 1 if step % 100 == 0: precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f\n' % (loss, precision)) summary_writer.flush() sv.Stop()
Example #12
Source File: resnet_main.py From Action_Recognition_Zoo with MIT License | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: time.sleep(60) try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in xrange(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f\n' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break
Example #13
Source File: resnet_main.py From Action_Recognition_Zoo with MIT License | 4 votes |
def train(hps): """Training loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.train_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() summary_writer = tf.train.SummaryWriter(FLAGS.train_dir) sv = tf.train.Supervisor(logdir=FLAGS.log_root, is_chief=True, summary_op=None, save_summaries_secs=60, save_model_secs=300, global_step=model.global_step) sess = sv.prepare_or_wait_for_session( config=tf.ConfigProto(allow_soft_placement=True)) step = 0 lrn_rate = 0.1 while not sv.should_stop(): (_, summaries, loss, predictions, truth, train_step) = sess.run( [model.train_op, model.summaries, model.cost, model.predictions, model.labels, model.global_step], feed_dict={model.lrn_rate: lrn_rate}) if train_step < 40000: lrn_rate = 0.1 elif train_step < 60000: lrn_rate = 0.01 elif train_step < 80000: lrn_rate = 0.001 else: lrn_rate = 0.0001 truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) precision = np.mean(truth == predictions) step += 1 if step % 100 == 0: precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f\n' % (loss, precision)) summary_writer.flush() sv.Stop()
Example #14
Source File: resnet_main.py From deeplearning-benchmark with Apache License 2.0 | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: time.sleep(60) try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in xrange(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f\n' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break
Example #15
Source File: resnet_main.py From deeplearning-benchmark with Apache License 2.0 | 4 votes |
def train(hps): """Training loop.""" images, labels = synthetic_data(hps.batch_size) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() summary_writer = tf.train.SummaryWriter(FLAGS.train_dir) sv = tf.train.Supervisor(logdir=FLAGS.log_root, is_chief=True, summary_op=None, save_summaries_secs=60, save_model_secs=300, global_step=model.global_step) sess = sv.prepare_or_wait_for_session( config=tf.ConfigProto(allow_soft_placement=True)) step = 0 lrn_rate = 0.1 while not sv.should_stop(): (_, summaries, loss, predictions, truth, train_step) = sess.run( [model.train_op, model.summaries, model.cost, model.predictions, model.labels, model.global_step], feed_dict={model.lrn_rate: lrn_rate}) if train_step < 40000: lrn_rate = 0.1 elif train_step < 60000: lrn_rate = 0.01 elif train_step < 80000: lrn_rate = 0.001 else: lrn_rate = 0.0001 truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) precision = np.mean(truth == predictions) step += 1 if step % 100 == 0: precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f\n' % (loss, precision)) summary_writer.flush() sv.Stop()
Example #16
Source File: resnet_main.py From Gun-Detector with Apache License 2.0 | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)
Example #17
Source File: resnet_main.py From yolo_v2 with Apache License 2.0 | 4 votes |
def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) continue tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) total_prediction, correct_prediction = 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) truth = np.argmax(truth, axis=1) predictions = np.argmax(predictions, axis=1) correct_prediction += np.sum(truth == predictions) total_prediction += predictions.shape[0] precision = 1.0 * correct_prediction / total_prediction best_precision = max(precision, best_precision) precision_summ = tf.Summary() precision_summ.value.add( tag='Precision', simple_value=precision) summary_writer.add_summary(precision_summ, train_step) best_precision_summ = tf.Summary() best_precision_summ.value.add( tag='Best Precision', simple_value=best_precision) summary_writer.add_summary(best_precision_summ, train_step) summary_writer.add_summary(summaries, train_step) tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' % (loss, precision, best_precision)) summary_writer.flush() if FLAGS.eval_once: break time.sleep(60)