Python tensorflow.python.ops.math_ops.divide() Examples
The following are 17
code examples of tensorflow.python.ops.math_ops.divide().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.math_ops
, or try the search function
.
Example #1
Source File: metrics.py From X-Detector with Apache License 2.0 | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return tf.where( math_ops.greater(denominator, 0), math_ops.divide(numerator, denominator), tf.zeros_like(numerator), name=name) # =========================================================================== # # TF Extended metrics: TP and FP arrays. # =========================================================================== #
Example #2
Source File: session_debug_testlib.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def testDebugNumericSummaryMuteOnHealthyAndCustomBoundsWork(self): with session.Session() as sess: a = variables.Variable([10.0, 10.0], name="a") b = variables.Variable([10.0, 2.0], name="b") x = math_ops.add(a, b, name="x") # [20.0, 12.0] y = math_ops.divide(x, b, name="y") # [2.0, 6.0] sess.run(variables.global_variables_initializer()) # Here, validate=False is necessary to avoid causality check error. # TODO(cais): Maybe let DebugDumpDir constructor automatically ignore # debug ops with mute_if_healthy=false attribute during validation. _, dump = self._debug_run_and_get_dump( sess, y, debug_ops=[ "DebugNumericSummary(mute_if_healthy=true; upper_bound=11.0)"], validate=False) self.assertEqual(1, dump.size) self.assertAllClose([[ 1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, 20.0, 16.0, 16.0, 1.0, 1.0, 2.0]], dump.get_tensors("x", 0, "DebugNumericSummary"))
Example #3
Source File: sample_embedding_helper.py From paraphraser with MIT License | 6 votes |
def sample(self, time, outputs, state, name=None): """sample for SampleEmbeddingHelper.""" del time, state # unused by sample_fn # Outputs are logits, we sample instead of argmax (greedy). if not isinstance(outputs, ops.Tensor): raise TypeError("Expected outputs to be a single Tensor, got: %s" % type(outputs)) if self._softmax_temperature is None: logits = outputs else: #logits = outputs / self._softmax_temperature logits = math_ops.divide(outputs, self._softmax_temperature) sample_id_sampler = categorical.Categorical(logits=logits) sample_ids = sample_id_sampler.sample(seed=self._seed) return sample_ids
Example #4
Source File: sample_embedding_helper.py From paraphraser with MIT License | 6 votes |
def __init__(self, embedding, start_tokens, end_token, softmax_temperature=None, seed=None): """Initializer. Args: embedding: A callable that takes a vector tensor of `ids` (argmax ids), or the `params` argument for `embedding_lookup`. The returned tensor will be passed to the decoder input. start_tokens: `int32` vector shaped `[batch_size]`, the start tokens. end_token: `int32` scalar, the token that marks end of decoding. softmax_temperature: (Optional) `float32` scalar, value to divide the logits by before computing the softmax. Larger values (above 1.0) result in more random samples, while smaller values push the sampling distribution towards the argmax. Must be strictly greater than 0. Defaults to 1.0. seed: (Optional) The sampling seed. Raises: ValueError: if `start_tokens` is not a 1D tensor or `end_token` is not a scalar. """ super(MySampleEmbeddingHelper, self).__init__( embedding, start_tokens, end_token) self._softmax_temperature = softmax_temperature self._seed = seed
Example #5
Source File: sparse_optimizers.py From rigl with Apache License 2.0 | 6 votes |
def get_drop_fraction(self, global_step, is_mask_update_iter_op): """Returns a constant or annealing drop_fraction op.""" if self._drop_fraction_anneal == 'constant': drop_frac = self._drop_fraction_initial_value elif self._drop_fraction_anneal == 'cosine': decay_steps = self._end_step - self._begin_step drop_frac = learning_rate_decay.cosine_decay( self._drop_fraction_initial_value, global_step, decay_steps, name='cosine_drop_fraction') elif self._drop_fraction_anneal.startswith('exponential'): exponent = extract_number(self._drop_fraction_anneal) div_dtype = self._drop_fraction_initial_value.dtype power = math_ops.divide( math_ops.cast(global_step - self._begin_step, div_dtype), math_ops.cast(self._end_step - self._begin_step, div_dtype), ) drop_frac = math_ops.multiply( self._drop_fraction_initial_value, math_ops.pow(1 - power, exponent), name='%s_drop_fraction' % self._drop_fraction_anneal) else: raise ValueError('drop_fraction_anneal: %s is not valid' % self._drop_fraction_anneal) return array_ops.where(is_mask_update_iter_op, drop_frac, array_ops.zeros_like(drop_frac))
Example #6
Source File: math.py From HUAWEIOCR-2019 with MIT License | 5 votes |
def safe_divide(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return tf.where( math_ops.greater(denominator, 0), math_ops.divide(numerator, denominator), tf.zeros_like(numerator), name=name)
Example #7
Source File: ssd_augmenter.py From lambda-deep-learning-demo with Apache License 2.0 | 5 votes |
def safe_divide(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return tf.where( math_ops.greater(denominator, 0), math_ops.divide(numerator, denominator), tf.zeros_like(numerator), name=name)
Example #8
Source File: session_debug_testlib.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def testDebugNumericSummaryMuteOnHealthyMutesOnlyHealthyTensorDumps(self): with session.Session(config=no_rewrite_session_config()) as sess: a = variables.Variable(10.0, name="a") b = variables.Variable(0.0, name="b") c = variables.Variable(0.0, name="c") x = math_ops.divide(a, b, name="x") y = math_ops.multiply(x, c, name="y") sess.run(variables.global_variables_initializer()) # Here, validate=False is necessary to avoid causality check error. # TODO(cais): Maybe let DebugDumpDir constructor automatically ignore # debug ops with mute_if_healthy=false attribute during validation. _, dump = self._debug_run_and_get_dump( sess, y, debug_ops=["DebugNumericSummary(mute_if_healthy=true)"], validate=False) self.assertEqual(2, dump.size) self.assertAllClose([[ 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, np.inf, -np.inf, np.nan, np.nan, 1.0, 0.0 ]], dump.get_tensors("x", 0, "DebugNumericSummary")) self.assertAllClose([[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, np.inf, -np.inf, np.nan, np.nan, 1.0, 0.0 ]], dump.get_tensors("y", 0, "DebugNumericSummary")) # Another run with the default mute_if_healthy (false) value should # dump all the tensors. shutil.rmtree(self._dump_root) _, dump = self._debug_run_and_get_dump( sess, y, debug_ops=["DebugNumericSummary()"]) self.assertEqual(8, dump.size)
Example #9
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def _test_div(data, fused_activation_function=None): """ One iteration of divide """ return _test_elemwise(math_ops.divide, data, fused_activation_function) ####################################################################### # Power # -----
Example #10
Source File: math.py From SSD_tensorflow_VOC with Apache License 2.0 | 5 votes |
def safe_divide(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return tf.where( math_ops.greater(denominator, 0), math_ops.divide(numerator, denominator), tf.zeros_like(numerator), name=name)
Example #11
Source File: metrics.py From SSD_tensorflow_VOC with Apache License 2.0 | 5 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return tf.where( math_ops.greater(denominator, 0), math_ops.divide(numerator, denominator), tf.zeros_like(numerator), name=name)
Example #12
Source File: math.py From pixel_link with MIT License | 5 votes |
def safe_divide(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return tf.where( math_ops.greater(denominator, 0), math_ops.divide(numerator, denominator), tf.zeros_like(numerator), name=name)
Example #13
Source File: session_debug_testlib.py From lambda-packs with MIT License | 5 votes |
def testDebugNumericSummaryMuteOnHealthyAndCustomBoundsWork(self): with session.Session() as sess: a = variables.Variable([10.0, 10.0], name="a") b = variables.Variable([10.0, 2.0], name="b") x = math_ops.add(a, b, name="x") # [20.0, 12.0] y = math_ops.divide(x, b, name="y") # [2.0, 6.0] sess.run(variables.global_variables_initializer()) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=[ "DebugNumericSummary(mute_if_healthy=true; upper_bound=11.0)"], debug_urls=self._debug_urls()) sess.run(y, options=run_options, run_metadata=run_metadata) dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs, validate=False) # Here, validate=False is necessary to avoid causality check error. # TODO(cais): Maybe let DebugDumpDir constructor automatically ignore # debug ops with mute_if_healthy=false attribute during validation. self.assertEqual(1, dump.size) self.assertAllClose( [[1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, 20.0, 16.0, 16.0]], dump.get_tensors("x", 0, "DebugNumericSummary"))
Example #14
Source File: math.py From seglink with GNU General Public License v3.0 | 5 votes |
def safe_divide(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return tf.where( math_ops.greater(denominator, 0), math_ops.divide(numerator, denominator), tf.zeros_like(numerator), name=name)
Example #15
Source File: session_debug_testlib.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def testDebugNumericSummaryInvalidAttributesStringAreCaught(self): with session.Session(config=no_rewrite_session_config()) as sess: a = variables.Variable(10.0, name="a") b = variables.Variable(0.0, name="b") c = variables.Variable(0.0, name="c") x = math_ops.divide(a, b, name="x") y = math_ops.multiply(x, c, name="y") sess.run(variables.global_variables_initializer()) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"1 attribute key\(s\) were not valid for debug node " r"__dbg_.:0_0_DebugNumericSummary: foo"): sess.run(y, options=run_options, run_metadata=run_metadata) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0; bar=false)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"2 attribute key\(s\) were not valid for debug node " r"__dbg_.:0_0_DebugNumericSummary:"): sess.run(y, options=run_options, run_metadata=run_metadata) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0; mute_if_healthy=true)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"1 attribute key\(s\) were not valid for debug node " r"__dbg_.:0_0_DebugNumericSummary: foo"): sess.run(y, options=run_options, run_metadata=run_metadata)
Example #16
Source File: session_debug_testlib.py From lambda-packs with MIT License | 4 votes |
def testDebugNumericSummaryMuteOnHealthyMutesOnlyHealthyTensorDumps(self): with session.Session() as sess: a = variables.Variable(10.0, name="a") b = variables.Variable(0.0, name="b") c = variables.Variable(0.0, name="c") x = math_ops.divide(a, b, name="x") y = math_ops.multiply(x, c, name="y") sess.run(variables.global_variables_initializer()) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(mute_if_healthy=true)"], debug_urls=self._debug_urls()) sess.run(y, options=run_options, run_metadata=run_metadata) dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs, validate=False) # Here, validate=False is necessary to avoid causality check error. # TODO(cais): Maybe let DebugDumpDir constructor automatically ignore # debug ops with mute_if_healthy=false attribute during validation. self.assertEqual(2, dump.size) self.assertAllClose( [[1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, np.inf, -np.inf, np.nan, np.nan]], dump.get_tensors("x", 0, "DebugNumericSummary")) self.assertAllClose( [[1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, np.inf, -np.inf, np.nan, np.nan]], dump.get_tensors("y", 0, "DebugNumericSummary")) # Another run with the default mute_if_healthy (false) value should # dump all the tensors. shutil.rmtree(self._dump_root) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary()"], debug_urls=self._debug_urls()) sess.run(y, options=run_options, run_metadata=run_metadata) dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) self.assertEqual(8, dump.size)
Example #17
Source File: session_debug_testlib.py From lambda-packs with MIT License | 4 votes |
def testDebugNumericSummaryInvalidAttributesStringAreCaught(self): with session.Session() as sess: a = variables.Variable(10.0, name="a") b = variables.Variable(0.0, name="b") c = variables.Variable(0.0, name="c") x = math_ops.divide(a, b, name="x") y = math_ops.multiply(x, c, name="y") sess.run(variables.global_variables_initializer()) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"1 attribute key\(s\) were not valid for debug node " r"__dbg_a:0_0_DebugNumericSummary: foo"): sess.run(y, options=run_options, run_metadata=run_metadata) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0; bar=false)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"2 attribute key\(s\) were not valid for debug node " r"__dbg_a:0_0_DebugNumericSummary:"): sess.run(y, options=run_options, run_metadata=run_metadata) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0; mute_if_healthy=true)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"1 attribute key\(s\) were not valid for debug node " r"__dbg_a:0_0_DebugNumericSummary: foo"): sess.run(y, options=run_options, run_metadata=run_metadata)