Python tensorflow.contrib.slim.arg_scope() Examples
The following are 30
code examples of tensorflow.contrib.slim.arg_scope().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.slim
, or try the search function
.
Example #1
Source File: mobilenet_v2.py From R2CNN_Faster-RCNN_Tensorflow with MIT License | 6 votes |
def mobilenetv2_scope(is_training=True, trainable=True, weight_decay=0.00004, stddev=0.09, dropout_keep_prob=0.8, bn_decay=0.997): """Defines Mobilenet training scope. In default. We do not use BN ReWrite the scope. """ batch_norm_params = { 'is_training': False, 'trainable': False, 'decay': bn_decay, } with slim.arg_scope(training_scope(is_training=is_training, weight_decay=weight_decay)): with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.separable_conv2d], trainable=trainable): with slim.arg_scope([slim.batch_norm], **batch_norm_params) as sc: return sc
Example #2
Source File: squeezenet.py From tf_ctpn with MIT License | 6 votes |
def _image_to_head(self, is_training, reuse=None): with slim.arg_scope(self._arg_scope(is_training, reuse)): net = slim.conv2d(self._image, 96, [3, 3], stride=1, scope='conv1') net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool1') net = self.fire_module(net, 16, 64, scope='fire2') net = self.fire_module(net, 16, 64, scope='fire3') net = self.fire_module(net, 32, 128, scope='fire4') net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool4') net = self.fire_module(net, 32, 128, scope='fire5') net = self.fire_module(net, 48, 192, scope='fire6') net = self.fire_module(net, 48, 192, scope='fire7') net = self.fire_module(net, 64, 256, scope='fire8') net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool8', padding='SAME') net = self.fire_module(net, 64, 256, scope='fire9') net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool9', padding='SAME') net = self.fire_module(net, 64, 512, scope='fire10') self._act_summaries.append(net) self._layers['head'] = net return net
Example #3
Source File: resnet_v1.py From tf_ctpn with MIT License | 6 votes |
def resnet_arg_scope(is_training=True, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': tf.GraphKeys.UPDATE_OPS } with arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), weights_initializer=slim.variance_scaling_initializer(), trainable=is_training, activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc: return arg_sc
Example #4
Source File: mobilenet_v2.py From R2CNN-Plus-Plus_Tensorflow with MIT License | 6 votes |
def mobilenetv2_scope(is_training=True, trainable=True, weight_decay=0.00004, stddev=0.09, dropout_keep_prob=0.8, bn_decay=0.997): """Defines Mobilenet training scope. In default. We do not use BN ReWrite the scope. """ batch_norm_params = { 'is_training': False, 'trainable': False, 'decay': bn_decay, } with slim.arg_scope(training_scope(is_training=is_training, weight_decay=weight_decay)): with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.separable_conv2d], trainable=trainable): with slim.arg_scope([slim.batch_norm], **batch_norm_params) as sc: return sc
Example #5
Source File: layers.py From hierarchical_loc with BSD 3-Clause "New" or "Revised" License | 6 votes |
def delf_attention(feature_map, config, is_training, arg_scope=None): with tf.variable_scope('attonly/attention/compute'): with slim.arg_scope(arg_scope): is_training = config['train_attention'] and is_training with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=is_training): with slim.arg_scope([slim.batch_norm], is_training=is_training): attention = slim.conv2d( feature_map, 512, config['attention_kernel'], rate=1, activation_fn=tf.nn.relu, scope='conv1') attention = slim.conv2d( attention, 1, config['attention_kernel'], rate=1, activation_fn=None, normalizer_fn=None, scope='conv2') attention = tf.nn.softplus(attention) if config['normalize_feature_map']: feature_map = tf.nn.l2_normalize(feature_map, -1) descriptor = tf.reduce_sum(feature_map*attention, axis=[1, 2]) if config['normalize_average']: descriptor /= tf.reduce_sum(attention, axis=[1, 2]) return descriptor
Example #6
Source File: squeezenet.py From tf_ctpn with MIT License | 6 votes |
def _arg_scope(self, is_training, reuse=None): weight_decay = 0.0 keep_probability = 1.0 batch_norm_params = { 'is_training': is_training, # Decay for the moving averages. 'decay': 0.995, # epsilon to prevent 0s in variance. 'epsilon': 0.001 } with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=slim.xavier_initializer_conv2d(uniform=True), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with tf.variable_scope(self._scope, self._scope, reuse=reuse): with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training) as sc: return sc
Example #7
Source File: model_train.py From ICDAR-2019-SROIE with MIT License | 6 votes |
def model(image): image = mean_image_subtraction(image) with slim.arg_scope(vgg.vgg_arg_scope()): conv5_3 = vgg.vgg_16(image) rpn_conv = slim.conv2d(conv5_3, 512, 3) lstm_output = Bilstm(rpn_conv, 512, 128, 512, scope_name='BiLSTM') bbox_pred = lstm_fc(lstm_output, 512, 10 * 4, scope_name="bbox_pred") cls_pred = lstm_fc(lstm_output, 512, 10 * 2, scope_name="cls_pred") # transpose: (1, H, W, A x d) -> (1, H, WxA, d) cls_pred_shape = tf.shape(cls_pred) cls_pred_reshape = tf.reshape(cls_pred, [cls_pred_shape[0], cls_pred_shape[1], -1, 2]) cls_pred_reshape_shape = tf.shape(cls_pred_reshape) cls_prob = tf.reshape(tf.nn.softmax(tf.reshape(cls_pred_reshape, [-1, cls_pred_reshape_shape[3]])), [-1, cls_pred_reshape_shape[1], cls_pred_reshape_shape[2], cls_pred_reshape_shape[3]], name="cls_prob") return bbox_pred, cls_pred, cls_prob
Example #8
Source File: mobilenetvlad.py From hierarchical_loc with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _model(self, inputs, mode, **config): image = image_normalization(inputs['image']) if image.shape[-1] == 1: image = tf.tile(image, [1, 1, 1, 3]) if config['resize_input']: new_size = tf.to_int32(tf.round( tf.to_float(tf.shape(image)[1:3]) / float(config['resize_input']))) image = tf.image.resize_images(image, new_size) is_training = config['train_backbone'] and (mode == Mode.TRAIN) with slim.arg_scope(mobilenet.training_scope( is_training=is_training, dropout_keep_prob=config['dropout_keep_prob'])): _, encoder = mobilenet.mobilenet(image, num_classes=None, base_only=True, depth_multiplier=config['depth_multiplier'], final_endpoint=config['encoder_endpoint']) feature_map = encoder[config['encoder_endpoint']] descriptor = vlad(feature_map, config, mode == Mode.TRAIN) if config['dimensionality_reduction']: descriptor = dimensionality_reduction(descriptor, config) return {'descriptor': descriptor}
Example #9
Source File: delf.py From hierarchical_loc with BSD 3-Clause "New" or "Revised" License | 6 votes |
def tower(image, mode, config): image = image_normalization(image) if image.shape[-1] == 1: image = tf.tile(image, [1, 1, 1, 3]) with slim.arg_scope(resnet.resnet_arg_scope()): is_training = config['train_backbone'] and (mode == Mode.TRAIN) with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=is_training): _, encoder = resnet.resnet_v1_50(image, is_training=is_training, global_pool=False, scope='resnet_v1_50') feature_map = encoder['resnet_v1_50/block3'] if config['use_attention']: descriptor = delf_attention(feature_map, config, mode == Mode.TRAIN, resnet.resnet_arg_scope()) else: descriptor = tf.reduce_max(feature_map, [1, 2]) if config['dimensionality_reduction']: descriptor = dimensionality_reduction(descriptor, config) return descriptor
Example #10
Source File: test_imagenet_attacks.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __call__(self, x_input, return_logits=False): """Constructs model and return probabilities for given input.""" reuse = True if self.built else None with slim.arg_scope(inception.inception_v3_arg_scope()): # Inception preprocessing uses [-1, 1]-scaled input. x_input = x_input * 2.0 - 1.0 _, end_points = inception.inception_v3( x_input, num_classes=self.nb_classes, is_training=False, reuse=reuse) self.built = True self.logits = end_points['Logits'] # Strip off the extra reshape op at the output self.probs = end_points['Predictions'].op.inputs[0] if return_logits: return self.logits else: return self.probs
Example #11
Source File: netvlad_triplets.py From hierarchical_loc with BSD 3-Clause "New" or "Revised" License | 6 votes |
def tower(image, mode, config): image = image_normalization(image) if image.shape[-1] == 1: image = tf.tile(image, [1, 1, 1, 3]) with slim.arg_scope(resnet.resnet_arg_scope()): training = config['train_backbone'] and (mode == Mode.TRAIN) with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=training): _, encoder = resnet.resnet_v1_50(image, is_training=training, global_pool=False, scope='resnet_v1_50') feature_map = encoder['resnet_v1_50/block3'] descriptor = vlad(feature_map, config, mode == Mode.TRAIN) if config['dimensionality_reduction']: descriptor = dimensionality_reduction(descriptor, config) return descriptor
Example #12
Source File: model.py From DOTA_models with Apache License 2.0 | 6 votes |
def conv_tower_fn(self, images, is_training=True, reuse=None): """Computes convolutional features using the InceptionV3 model. Args: images: A tensor of shape [batch_size, height, width, channels]. is_training: whether is training or not. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. Returns: A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of output feature map and N is number of output features (depends on the network architecture). """ mparams = self._mparams['conv_tower_fn'] logging.debug('Using final_endpoint=%s', mparams.final_endpoint) with tf.variable_scope('conv_tower_fn/INCE'): if reuse: tf.get_variable_scope().reuse_variables() with slim.arg_scope(inception.inception_v3_arg_scope()): net, _ = inception.inception_v3_base( images, final_endpoint=mparams.final_endpoint) return net
Example #13
Source File: model.py From minimal-entropy-correlation-alignment with MIT License | 6 votes |
def E(self, images, is_training = False, reuse=False): if images.get_shape()[3] == 3: images = tf.image.rgb_to_grayscale(images) with tf.variable_scope('encoder',reuse=reuse): with slim.arg_scope([slim.fully_connected], activation_fn=tf.nn.relu): with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, padding='VALID'): net = slim.conv2d(images, 64, 5, scope='conv1') net = slim.max_pool2d(net, 2, stride=2, scope='pool1') net = slim.conv2d(net, 128, 5, scope='conv2') net = slim.max_pool2d(net, 2, stride=2, scope='pool2') net = tf.contrib.layers.flatten(net) net = slim.fully_connected(net, 1024, activation_fn=tf.nn.relu, scope='fc3') net = slim.dropout(net, 0.5, is_training=is_training) net = slim.fully_connected(net, self.hidden_repr_size, activation_fn=tf.tanh,scope='fc4') # dropout here or not? #~ net = slim.dropout(net, 0.5, is_training=is_training) return net
Example #14
Source File: resnet_v1.py From SSH-TensorFlow with MIT License | 6 votes |
def resnet_arg_scope(is_training=True, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': tf.GraphKeys.UPDATE_OPS } with arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), weights_initializer=slim.variance_scaling_initializer(), trainable=is_training, activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc: return arg_sc
Example #15
Source File: mobilenet_v2.py From benchmarks with Apache License 2.0 | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #16
Source File: seglink_symbol.py From seglink with GNU General Public License v3.0 | 6 votes |
def _build_network(self): with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(self.weight_decay), weights_initializer= self.weights_initializer, biases_initializer = self.biases_initializer): with slim.arg_scope([slim.conv2d, slim.max_pool2d], padding='SAME', data_format = self.data_format): with tf.variable_scope(self.basenet_type): basenet, end_points = net_factory.get_basenet(self.basenet_type, self.inputs); with tf.variable_scope('extra_layers'): self.net, self.end_points = self._add_extra_layers(basenet, end_points); with tf.variable_scope('seglink_layers'): self._add_seglink_layers();
Example #17
Source File: nasnet_test.py From benchmarks with Apache License 2.0 | 6 votes |
def testBuildLogitsCifarModel(self): batch_size = 5 height, width = 32, 32 num_classes = 10 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()): logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #18
Source File: nasnet_test.py From benchmarks with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #19
Source File: nasnet_test.py From benchmarks with Apache License 2.0 | 6 votes |
def testBuildLogitsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_large_arg_scope()): logits, end_points = nasnet.build_nasnet_large(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #20
Source File: dfc_vae.py From TNT with GNU General Public License v3.0 | 6 votes |
def encoder(self, images, is_training): activation_fn = leaky_relu # tf.nn.relu weight_decay = 0.0 with tf.variable_scope('encoder'): with slim.arg_scope([slim.batch_norm], is_training=is_training): with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=self.batch_norm_params): net = slim.conv2d(images, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1') net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2') net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3') net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4') net = slim.flatten(net) fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1') fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2') return fc1, fc2
Example #21
Source File: inception_resnet_v1.py From TNT with GNU General Public License v3.0 | 6 votes |
def inference(images, keep_probability, phase_train=True, bottleneck_layer_size=128, weight_decay=0.0, reuse=None): batch_norm_params = { # Decay for the moving averages. 'decay': 0.995, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ], } with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): return inception_resnet_v1(images, is_training=phase_train, dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
Example #22
Source File: dummy.py From TNT with GNU General Public License v3.0 | 6 votes |
def inference(images, keep_probability, phase_train=True, # @UnusedVariable bottleneck_layer_size=128, bottleneck_layer_activation=None, weight_decay=0.0, reuse=None): # @UnusedVariable batch_norm_params = { # Decay for the moving averages. 'decay': 0.995, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ], } with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): size = np.prod(images.get_shape()[1:].as_list()) net = slim.fully_connected(tf.reshape(images, (-1,size)), bottleneck_layer_size, activation_fn=None, scope='Bottleneck', reuse=False) return net, None
Example #23
Source File: inception_resnet_v2.py From TNT with GNU General Public License v3.0 | 6 votes |
def inference(images, keep_probability, phase_train=True, bottleneck_layer_size=128, weight_decay=0.0, reuse=None): batch_norm_params = { # Decay for the moving averages. 'decay': 0.995, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ], } with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): return inception_resnet_v2(images, is_training=phase_train, dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
Example #24
Source File: pyramid_network.py From FastMaskRCNN with Apache License 2.0 | 6 votes |
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None): with slim.arg_scope( [slim.conv2d, slim.conv2d_transpose], padding='SAME', weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=tf.truncated_normal_initializer(stddev=0.001), activation_fn=activation_fn, normalizer_fn=normalizer_fn,) as arg_sc: with slim.arg_scope( [slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=tf.truncated_normal_initializer(stddev=0.001), activation_fn=activation_fn, normalizer_fn=normalizer_fn) as arg_sc: return arg_sc
Example #25
Source File: pyramid_network.py From FastMaskRCNN with Apache License 2.0 | 6 votes |
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001, activation_fn=None, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'updates_collections': tf.GraphKeys.UPDATE_OPS, } with slim.arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=slim.variance_scaling_initializer(), activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc: return arg_sc
Example #26
Source File: mobilenet_v2.py From R2CNN-Plus-Plus_Tensorflow with MIT License | 5 votes |
def mobilenetv2_head(inputs, is_training=True): with slim.arg_scope(mobilenetv2_scope(is_training=is_training, trainable=True)): net, _ = mobilenet_v2.mobilenet(input_tensor=inputs, num_classes=None, is_training=False, depth_multiplier=1.0, scope='MobilenetV2', conv_defs=V2_HEAD_DEF, finegrain_classification_mode=False) net = tf.squeeze(net, [1, 2]) return net
Example #27
Source File: mobilenet_v2.py From R2CNN-Plus-Plus_Tensorflow with MIT License | 5 votes |
def mobilenetv2_base(img_batch, is_training=True): with slim.arg_scope(mobilenetv2_scope(is_training=is_training, trainable=True)): feature_to_crop, endpoints = mobilenet_v2.mobilenet_base(input_tensor=img_batch, num_classes=None, is_training=False, depth_multiplier=1.0, scope='MobilenetV2', conv_defs=V2_BASE_DEF, finegrain_classification_mode=False) # feature_to_crop = tf.Print(feature_to_crop, [tf.shape(feature_to_crop)], summarize=10, message='rpn_shape') return feature_to_crop
Example #28
Source File: mobilenet_v2.py From tf_ctpn with MIT License | 5 votes |
def _image_to_head(self, is_training, reuse=None): with slim.arg_scope(mobilenet_v2.training_scope(is_training=is_training)): net, endpoints = mobilenet_v2.mobilenet_base(self._image, conv_defs=CTPN_DEF) self.variables_to_restore = slim.get_variables_to_restore() self._act_summaries.append(net) self._layers['head'] = net return net
Example #29
Source File: squeezenet.py From tf_ctpn with MIT License | 5 votes |
def fire_module(self, inputs, squeeze_depth, expand_depth, reuse=None, scope=None, outputs_collections=None): with tf.variable_scope(scope, 'fire', [inputs], reuse=reuse): with slim.arg_scope([slim.conv2d, slim.max_pool2d], outputs_collections=None): net = self.squeeze(inputs, squeeze_depth) outputs = self.expand(net, expand_depth) return outputs
Example #30
Source File: dfc_vae.py From TNT with GNU General Public License v3.0 | 5 votes |
def decoder(self, latent_var, is_training): activation_fn = leaky_relu # tf.nn.relu weight_decay = 0.0 with tf.variable_scope('decoder'): with slim.arg_scope([slim.batch_norm], is_training=is_training): with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=self.batch_norm_params): net = slim.fully_connected(latent_var, 4096, activation_fn=None, normalizer_fn=None, scope='Fc_1') net = tf.reshape(net, [-1,4,4,256], name='Reshape') net = tf.image.resize_nearest_neighbor(net, size=(8,8), name='Upsample_1') net = slim.conv2d(net, 128, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_1') net = tf.image.resize_nearest_neighbor(net, size=(16,16), name='Upsample_2') net = slim.conv2d(net, 64, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_2') net = tf.image.resize_nearest_neighbor(net, size=(32,32), name='Upsample_3') net = slim.conv2d(net, 32, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_3') net = tf.image.resize_nearest_neighbor(net, size=(64,64), name='Upsample_4') net = slim.conv2d(net, 3, [3, 3], 1, activation_fn=None, scope='Conv2d_4') return net