Python tensorflow.contrib.slim.get_variables_to_restore() Examples
The following are 30
code examples of tensorflow.contrib.slim.get_variables_to_restore().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.slim
, or try the search function
.
Example #1
Source File: freeze_model.py From WorkControl with Apache License 2.0 | 6 votes |
def main(): args = parse_args() with tf.Session(graph=tf.Graph()) as session: input_var = tf.placeholder( tf.uint8, (None, 128, 64, 3), name="images") image_var = tf.map_fn( lambda x: _preprocess(x), tf.cast(input_var, tf.float32), back_prop=False) factory_fn = _network_factory() features, _ = factory_fn(image_var, reuse=None) features = tf.identity(features, name="features") saver = tf.train.Saver(slim.get_variables_to_restore()) saver.restore(session, args.checkpoint_in) output_graph_def = tf.graph_util.convert_variables_to_constants( session, tf.get_default_graph().as_graph_def(), [features.name.split(":")[0]]) with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle: file_handle.write(output_graph_def.SerializeToString())
Example #2
Source File: model.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def build_pretrained_graph( self, images, resnet_layer, checkpoint, is_training, reuse=False): """See baseclass.""" with slim.arg_scope(resnet_v2.resnet_arg_scope()): _, endpoints = resnet_v2.resnet_v2_50( images, is_training=is_training, reuse=reuse) resnet_layer = 'resnet_v2_50/block%d' % resnet_layer resnet_output = endpoints[resnet_layer] resnet_variables = slim.get_variables_to_restore() resnet_variables = [ i for i in resnet_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(resnet_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return resnet_output, resnet_variables, init_fn
Example #3
Source File: model.py From object_detection_with_tensorflow with MIT License | 6 votes |
def build_pretrained_graph( self, images, resnet_layer, checkpoint, is_training, reuse=False): """See baseclass.""" with slim.arg_scope(resnet_v2.resnet_arg_scope()): _, endpoints = resnet_v2.resnet_v2_50( images, is_training=is_training, reuse=reuse) resnet_layer = 'resnet_v2_50/block%d' % resnet_layer resnet_output = endpoints[resnet_layer] resnet_variables = slim.get_variables_to_restore() resnet_variables = [ i for i in resnet_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(resnet_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return resnet_output, resnet_variables, init_fn
Example #4
Source File: model.py From models with Apache License 2.0 | 6 votes |
def build_pretrained_graph( self, images, resnet_layer, checkpoint, is_training, reuse=False): """See baseclass.""" with slim.arg_scope(resnet_v2.resnet_arg_scope()): _, endpoints = resnet_v2.resnet_v2_50( images, is_training=is_training, reuse=reuse) resnet_layer = 'resnet_v2_50/block%d' % resnet_layer resnet_output = endpoints[resnet_layer] resnet_variables = slim.get_variables_to_restore() resnet_variables = [ i for i in resnet_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(resnet_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return resnet_output, resnet_variables, init_fn
Example #5
Source File: model.py From Gun-Detector with Apache License 2.0 | 6 votes |
def build_pretrained_graph( self, images, resnet_layer, checkpoint, is_training, reuse=False): """See baseclass.""" with slim.arg_scope(resnet_v2.resnet_arg_scope()): _, endpoints = resnet_v2.resnet_v2_50( images, is_training=is_training, reuse=reuse) resnet_layer = 'resnet_v2_50/block%d' % resnet_layer resnet_output = endpoints[resnet_layer] resnet_variables = slim.get_variables_to_restore() resnet_variables = [ i for i in resnet_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(resnet_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return resnet_output, resnet_variables, init_fn
Example #6
Source File: freeze_model.py From deep_sort_yolov3 with MIT License | 6 votes |
def main(): args = parse_args() with tf.Session(graph=tf.Graph()) as session: input_var = tf.placeholder( tf.uint8, (None, 128, 64, 3), name="images") image_var = tf.map_fn( lambda x: _preprocess(x), tf.cast(input_var, tf.float32), back_prop=False) factory_fn = _network_factory() features, _ = factory_fn(image_var, reuse=None) features = tf.identity(features, name="features") saver = tf.train.Saver(slim.get_variables_to_restore()) saver.restore(session, args.checkpoint_in) output_graph_def = tf.graph_util.convert_variables_to_constants( session, tf.get_default_graph().as_graph_def(), [features.name.split(":")[0]]) with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle: file_handle.write(output_graph_def.SerializeToString())
Example #7
Source File: freeze_model.py From WorkControl with Apache License 2.0 | 6 votes |
def main(): args = parse_args() with tf.Session(graph=tf.Graph()) as session: input_var = tf.placeholder( tf.uint8, (None, 128, 64, 3), name="images") image_var = tf.map_fn( lambda x: _preprocess(x), tf.cast(input_var, tf.float32), back_prop=False) factory_fn = _network_factory() features, _ = factory_fn(image_var, reuse=None) features = tf.identity(features, name="features") saver = tf.train.Saver(slim.get_variables_to_restore()) saver.restore(session, args.checkpoint_in) output_graph_def = tf.graph_util.convert_variables_to_constants( session, tf.get_default_graph().as_graph_def(), [features.name.split(":")[0]]) with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle: file_handle.write(output_graph_def.SerializeToString())
Example #8
Source File: model.py From yolo_v2 with Apache License 2.0 | 6 votes |
def build_pretrained_graph( self, images, resnet_layer, checkpoint, is_training, reuse=False): """See baseclass.""" with slim.arg_scope(resnet_v2.resnet_arg_scope()): _, endpoints = resnet_v2.resnet_v2_50( images, is_training=is_training, reuse=reuse) resnet_layer = 'resnet_v2_50/block%d' % resnet_layer resnet_output = endpoints[resnet_layer] resnet_variables = slim.get_variables_to_restore() resnet_variables = [ i for i in resnet_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(resnet_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return resnet_output, resnet_variables, init_fn
Example #9
Source File: freeze_model.py From Vehicle-Detection-and-Tracking-Usig-YOLO-and-Deep-Sort-with-Keras-and-Tensorflow with MIT License | 6 votes |
def main(): args = parse_args() with tf.Session(graph=tf.Graph()) as session: input_var = tf.placeholder( tf.uint8, (None, 128, 64, 3), name="images") image_var = tf.map_fn( lambda x: _preprocess(x), tf.cast(input_var, tf.float32), back_prop=False) factory_fn = _network_factory() features, _ = factory_fn(image_var, reuse=None) features = tf.identity(features, name="features") saver = tf.train.Saver(slim.get_variables_to_restore()) saver.restore(session, args.checkpoint_in) output_graph_def = tf.graph_util.convert_variables_to_constants( session, tf.get_default_graph().as_graph_def(), [features.name.split(":")[0]]) with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle: file_handle.write(output_graph_def.SerializeToString())
Example #10
Source File: shift_net.py From multisensory with Apache License 2.0 | 6 votes |
def restore(self, path = None, restore_opt = True, restore_resnet18_blocks = True, restore_dilation_blocks = True): if path is None: path = tf.train.latest_checkpoint(self.pr.train_dir) print 'Restoring from:', path var_list = slim.get_variables_to_restore() opt_names = ['Adam', 'beta1_power', 'beta2_power', 'Momentum', 'cache'] if not restore_resnet18_blocks: opt_names += ['conv2_2_', 'conv3_2_', 'conv4_2_', 'conv5_2_'] if not restore_opt: var_list = [x for x in var_list if not any(name in x.name for name in opt_names)] print 'Restoring:' for x in var_list: print x.name print tf.train.Saver(var_list).restore(self.sess, path)
Example #11
Source File: freeze_model.py From deep_sort_yolov3 with GNU General Public License v3.0 | 6 votes |
def main(): args = parse_args() with tf.Session(graph=tf.Graph()) as session: input_var = tf.placeholder( tf.uint8, (None, 128, 64, 3), name="images") image_var = tf.map_fn( lambda x: _preprocess(x), tf.cast(input_var, tf.float32), back_prop=False) factory_fn = _network_factory() features, _ = factory_fn(image_var, reuse=None) features = tf.identity(features, name="features") saver = tf.train.Saver(slim.get_variables_to_restore()) saver.restore(session, args.checkpoint_in) output_graph_def = tf.graph_util.convert_variables_to_constants( session, tf.get_default_graph().as_graph_def(), [features.name.split(":")[0]]) with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle: file_handle.write(output_graph_def.SerializeToString())
Example #12
Source File: videocls.py From multisensory with Apache License 2.0 | 6 votes |
def restore(self, path = None, restore_opt = True, ul_only = False): if path is None: path = tf.train.latest_checkpoint(self.pr.train_dir) print 'Restoring:', path var_list = slim.get_variables_to_restore() for x in var_list: print x.name print var_list = slim.get_variables_to_restore() if not restore_opt: opt_names = ['Adam', 'beta1_power', 'beta2_power', 'Momentum'] + ['cls']# + ['renorm_mean_weight', 'renorm_stddev_weight', 'moving_mean', 'renorm'] print 'removing bn gamma' opt_names += ['gamma'] var_list = [x for x in var_list if not any(name in x.name for name in opt_names)] if ul_only: var_list = [x for x in var_list if not x.name.startswith('lb/') and ('global_step' not in x.name)] #var_list = [x for x in var_list if ('global_step' not in x.name)] print 'Restoring variables:' for x in var_list: print x.name tf.train.Saver(var_list).restore(self.sess, path) # print 'TEST: restoring all' # tf.train.Saver().restore(self.sess, path)
Example #13
Source File: model.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def build_pretrained_graph( self, images, resnet_layer, checkpoint, is_training, reuse=False): """See baseclass.""" with slim.arg_scope(resnet_v2.resnet_arg_scope()): _, endpoints = resnet_v2.resnet_v2_50( images, is_training=is_training, reuse=reuse) resnet_layer = 'resnet_v2_50/block%d' % resnet_layer resnet_output = endpoints[resnet_layer] resnet_variables = slim.get_variables_to_restore() resnet_variables = [ i for i in resnet_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(resnet_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return resnet_output, resnet_variables, init_fn
Example #14
Source File: freeze_model.py From multi-object-tracking with GNU General Public License v3.0 | 6 votes |
def main(): args = parse_args() with tf.Session(graph=tf.Graph()) as session: input_var = tf.placeholder( tf.uint8, (None, 128, 64, 3), name="images") image_var = tf.map_fn( lambda x: _preprocess(x), tf.cast(input_var, tf.float32), back_prop=False) factory_fn = _network_factory() features, _ = factory_fn(image_var, reuse=None) features = tf.identity(features, name="features") saver = tf.train.Saver(slim.get_variables_to_restore()) saver.restore(session, args.checkpoint_in) output_graph_def = tf.graph_util.convert_variables_to_constants( session, tf.get_default_graph().as_graph_def(), [features.name.split(":")[0]]) with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle: file_handle.write(output_graph_def.SerializeToString())
Example #15
Source File: freeze_model.py From deep_sort with GNU General Public License v3.0 | 6 votes |
def main(): args = parse_args() with tf.Session(graph=tf.Graph()) as session: input_var = tf.placeholder( tf.uint8, (None, 128, 64, 3), name="images") image_var = tf.map_fn( lambda x: _preprocess(x), tf.cast(input_var, tf.float32), back_prop=False) factory_fn = _network_factory() features, _ = factory_fn(image_var, reuse=None) features = tf.identity(features, name="features") saver = tf.train.Saver(slim.get_variables_to_restore()) saver.restore(session, args.checkpoint_in) output_graph_def = tf.graph_util.convert_variables_to_constants( session, tf.get_default_graph().as_graph_def(), [features.name.split(":")[0]]) with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle: file_handle.write(output_graph_def.SerializeToString())
Example #16
Source File: nav_utils.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def get_repr_from_image(images_reshaped, modalities, data_augment, encoder, freeze_conv, wt_decay, is_training): # Pass image through lots of convolutional layers, to obtain pool5 if modalities == ['rgb']: with tf.name_scope('pre_rgb'): x = (images_reshaped + 128.) / 255. # Convert to brightness between 0 and 1. if data_augment.relight and is_training: x = tf_utils.distort_image(x, fast_mode=data_augment.relight_fast) x = (x-0.5)*2.0 scope_name = encoder elif modalities == ['depth']: with tf.name_scope('pre_d'): d_image = images_reshaped x = 2*(d_image[...,0] - 80.0)/100.0 y = d_image[...,1] d_image = tf.concat([tf.expand_dims(x, -1), tf.expand_dims(y, -1)], 3) x = d_image scope_name = 'd_'+encoder resnet_is_training = is_training and (not freeze_conv) with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope(resnet_is_training)): fn = getattr(tf_utils, encoder) x, end_points = fn(x, num_classes=None, global_pool=False, output_stride=None, reuse=None, scope=scope_name) vars_ = slim.get_variables_to_restore() conv_feat = x return conv_feat, vars_
Example #17
Source File: model.py From object_detection_with_tensorflow with MIT License | 5 votes |
def build_inceptionv3_graph(images, endpoint, is_training, checkpoint, reuse=False): """Builds an InceptionV3 model graph. Args: images: A 4-D float32 `Tensor` of batch images. endpoint: String, name of the InceptionV3 endpoint. is_training: Boolean, whether or not to build a training or inference graph. checkpoint: String, path to the pretrained model checkpoint. reuse: Boolean, whether or not we are reusing the embedder. Returns: inception_output: `Tensor` holding the InceptionV3 output. inception_variables: List of inception variables. init_fn: Function to initialize the weights (if not reusing, then None). """ with slim.arg_scope(inception.inception_v3_arg_scope()): _, endpoints = inception.inception_v3( images, num_classes=1001, is_training=is_training) inception_output = endpoints[endpoint] inception_variables = slim.get_variables_to_restore() inception_variables = [ i for i in inception_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(inception_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return inception_output, inception_variables, init_fn
Example #18
Source File: sourcesep.py From multisensory with Apache License 2.0 | 5 votes |
def restore(self, path = None, restore_opt = True, init_type = None): if path is None: path = tf.train.latest_checkpoint(self.pr.train_dir) print 'Restoring from:', path var_list = slim.get_variables_to_restore() opt_names = ['Adam', 'beta1_power', 'beta2_power', 'Momentum', 'cache'] if init_type == 'shift': # gamma is reinitialized opt_names += ['gen/', 'discrim/', 'global_step', 'gamma'] elif init_type == 'sep': #opt_names += ['global_step'] opt_names += ['global_step', 'discrim'] elif init_type is None: pass else: raise RuntimeError() if not restore_opt or init_type is not None: var_list = [x for x in var_list if not any(name in x.name for name in opt_names)] print 'Restoring:' for x in var_list: print x.name print tf.train.Saver(var_list).restore(self.sess, path)
Example #19
Source File: utils.py From object_detection_with_tensorflow with MIT License | 5 votes |
def variables_to_restore(scope=None, strip_scope=False): """Returns a list of variables to restore for the specified list of methods. It is supposed that variable name starts with the method's scope (a prefix returned by _method_scope function). Args: methods_names: a list of names of configurable methods. strip_scope: if True will return variable names without method's scope. If methods_names is None will return names unchanged. model_scope: a scope for a whole model. Returns: a dictionary mapping variable names to variables for restore. """ if scope: variable_map = {} method_variables = slim.get_variables_to_restore(include=[scope]) for var in method_variables: if strip_scope: var_name = var.op.name[len(scope) + 1:] else: var_name = var.op.name variable_map[var_name] = var return variable_map else: return {v.op.name: v for v in slim.get_variables_to_restore()}
Example #20
Source File: nav_utils.py From object_detection_with_tensorflow with MIT License | 5 votes |
def get_repr_from_image(images_reshaped, modalities, data_augment, encoder, freeze_conv, wt_decay, is_training): # Pass image through lots of convolutional layers, to obtain pool5 if modalities == ['rgb']: with tf.name_scope('pre_rgb'): x = (images_reshaped + 128.) / 255. # Convert to brightness between 0 and 1. if data_augment.relight and is_training: x = tf_utils.distort_image(x, fast_mode=data_augment.relight_fast) x = (x-0.5)*2.0 scope_name = encoder elif modalities == ['depth']: with tf.name_scope('pre_d'): d_image = images_reshaped x = 2*(d_image[...,0] - 80.0)/100.0 y = d_image[...,1] d_image = tf.concat([tf.expand_dims(x, -1), tf.expand_dims(y, -1)], 3) x = d_image scope_name = 'd_'+encoder resnet_is_training = is_training and (not freeze_conv) with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope(resnet_is_training)): fn = getattr(tf_utils, encoder) x, end_points = fn(x, num_classes=None, global_pool=False, output_stride=None, reuse=None, scope=scope_name) vars_ = slim.get_variables_to_restore() conv_feat = x return conv_feat, vars_
Example #21
Source File: nav_utils.py From DOTA_models with Apache License 2.0 | 5 votes |
def get_repr_from_image(images_reshaped, modalities, data_augment, encoder, freeze_conv, wt_decay, is_training): # Pass image through lots of convolutional layers, to obtain pool5 if modalities == ['rgb']: with tf.name_scope('pre_rgb'): x = (images_reshaped + 128.) / 255. # Convert to brightness between 0 and 1. if data_augment.relight and is_training: x = tf_utils.distort_image(x, fast_mode=data_augment.relight_fast) x = (x-0.5)*2.0 scope_name = encoder elif modalities == ['depth']: with tf.name_scope('pre_d'): d_image = images_reshaped x = 2*(d_image[...,0] - 80.0)/100.0 y = d_image[...,1] d_image = tf.concat([tf.expand_dims(x, -1), tf.expand_dims(y, -1)], 3) x = d_image scope_name = 'd_'+encoder resnet_is_training = is_training and (not freeze_conv) with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope(resnet_is_training)): fn = getattr(tf_utils, encoder) x, end_points = fn(x, num_classes=None, global_pool=False, output_stride=None, reuse=None, scope=scope_name) vars_ = slim.get_variables_to_restore() conv_feat = x return conv_feat, vars_
Example #22
Source File: model.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def build_inceptionv3_graph(images, endpoint, is_training, checkpoint, reuse=False): """Builds an InceptionV3 model graph. Args: images: A 4-D float32 `Tensor` of batch images. endpoint: String, name of the InceptionV3 endpoint. is_training: Boolean, whether or not to build a training or inference graph. checkpoint: String, path to the pretrained model checkpoint. reuse: Boolean, whether or not we are reusing the embedder. Returns: inception_output: `Tensor` holding the InceptionV3 output. inception_variables: List of inception variables. init_fn: Function to initialize the weights (if not reusing, then None). """ with slim.arg_scope(inception.inception_v3_arg_scope()): _, endpoints = inception.inception_v3( images, num_classes=1001, is_training=is_training) inception_output = endpoints[endpoint] inception_variables = slim.get_variables_to_restore() inception_variables = [ i for i in inception_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(inception_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return inception_output, inception_variables, init_fn
Example #23
Source File: utils.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def variables_to_restore(scope=None, strip_scope=False): """Returns a list of variables to restore for the specified list of methods. It is supposed that variable name starts with the method's scope (a prefix returned by _method_scope function). Args: methods_names: a list of names of configurable methods. strip_scope: if True will return variable names without method's scope. If methods_names is None will return names unchanged. model_scope: a scope for a whole model. Returns: a dictionary mapping variable names to variables for restore. """ if scope: variable_map = {} method_variables = slim.get_variables_to_restore(include=[scope]) for var in method_variables: if strip_scope: var_name = var.op.name[len(scope) + 1:] else: var_name = var.op.name variable_map[var_name] = var return variable_map else: return {v.op.name: v for v in slim.get_variables_to_restore()}
Example #24
Source File: nav_utils.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def get_repr_from_image(images_reshaped, modalities, data_augment, encoder, freeze_conv, wt_decay, is_training): # Pass image through lots of convolutional layers, to obtain pool5 if modalities == ['rgb']: with tf.name_scope('pre_rgb'): x = (images_reshaped + 128.) / 255. # Convert to brightness between 0 and 1. if data_augment.relight and is_training: x = tf_utils.distort_image(x, fast_mode=data_augment.relight_fast) x = (x-0.5)*2.0 scope_name = encoder elif modalities == ['depth']: with tf.name_scope('pre_d'): d_image = images_reshaped x = 2*(d_image[...,0] - 80.0)/100.0 y = d_image[...,1] d_image = tf.concat([tf.expand_dims(x, -1), tf.expand_dims(y, -1)], 3) x = d_image scope_name = 'd_'+encoder resnet_is_training = is_training and (not freeze_conv) with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope(resnet_is_training)): fn = getattr(tf_utils, encoder) x, end_points = fn(x, num_classes=None, global_pool=False, output_stride=None, reuse=None, scope=scope_name) vars_ = slim.get_variables_to_restore() conv_feat = x return conv_feat, vars_
Example #25
Source File: model.py From models with Apache License 2.0 | 5 votes |
def build_inceptionv3_graph(images, endpoint, is_training, checkpoint, reuse=False): """Builds an InceptionV3 model graph. Args: images: A 4-D float32 `Tensor` of batch images. endpoint: String, name of the InceptionV3 endpoint. is_training: Boolean, whether or not to build a training or inference graph. checkpoint: String, path to the pretrained model checkpoint. reuse: Boolean, whether or not we are reusing the embedder. Returns: inception_output: `Tensor` holding the InceptionV3 output. inception_variables: List of inception variables. init_fn: Function to initialize the weights (if not reusing, then None). """ with slim.arg_scope(inception.inception_v3_arg_scope()): _, endpoints = inception.inception_v3( images, num_classes=1001, is_training=is_training) inception_output = endpoints[endpoint] inception_variables = slim.get_variables_to_restore() inception_variables = [ i for i in inception_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(inception_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return inception_output, inception_variables, init_fn
Example #26
Source File: utils.py From models with Apache License 2.0 | 5 votes |
def variables_to_restore(scope=None, strip_scope=False): """Returns a list of variables to restore for the specified list of methods. It is supposed that variable name starts with the method's scope (a prefix returned by _method_scope function). Args: methods_names: a list of names of configurable methods. strip_scope: if True will return variable names without method's scope. If methods_names is None will return names unchanged. model_scope: a scope for a whole model. Returns: a dictionary mapping variable names to variables for restore. """ if scope: variable_map = {} method_variables = slim.get_variables_to_restore(include=[scope]) for var in method_variables: if strip_scope: var_name = var.op.name[len(scope) + 1:] else: var_name = var.op.name variable_map[var_name] = var return variable_map else: return {v.op.name: v for v in slim.get_variables_to_restore()}
Example #27
Source File: nav_utils.py From models with Apache License 2.0 | 5 votes |
def get_repr_from_image(images_reshaped, modalities, data_augment, encoder, freeze_conv, wt_decay, is_training): # Pass image through lots of convolutional layers, to obtain pool5 if modalities == ['rgb']: with tf.name_scope('pre_rgb'): x = (images_reshaped + 128.) / 255. # Convert to brightness between 0 and 1. if data_augment.relight and is_training: x = tf_utils.distort_image(x, fast_mode=data_augment.relight_fast) x = (x-0.5)*2.0 scope_name = encoder elif modalities == ['depth']: with tf.name_scope('pre_d'): d_image = images_reshaped x = 2*(d_image[...,0] - 80.0)/100.0 y = d_image[...,1] d_image = tf.concat([tf.expand_dims(x, -1), tf.expand_dims(y, -1)], 3) x = d_image scope_name = 'd_'+encoder resnet_is_training = is_training and (not freeze_conv) with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope(resnet_is_training)): fn = getattr(tf_utils, encoder) x, end_points = fn(x, num_classes=None, global_pool=False, output_stride=None, reuse=None, scope=scope_name) vars_ = slim.get_variables_to_restore() conv_feat = x return conv_feat, vars_
Example #28
Source File: train_app.py From cosine_metric_learning with GNU General Public License v3.0 | 5 votes |
def finalize(preprocess_fn, network_factory, checkpoint_path, image_shape, output_filename): """Finalize model, i.e., strip off training variables and only save model variables to checkpoint file. Parameters ---------- preprocess_fn : Callable[tf.Tensor] -> tf.Tensor A callable that applies preprocessing to a given input image tensor of dtype tf.uint8 and returns a floating point representation (tf.float32). network_factory : Callable[tf.Tensor] -> (tf.Tensor, tf.Tensor) A callable that takes as argument a preprocessed input image of dtype tf.float32 and returns the feature representation as well as a logits tensors. The logits may be set to None if not required by the loss. checkpoint_path : str The checkpoint file to load. image_shape : Tuple[int, int, int] Image shape (height, width, channels). output_filename : str The checkpoint file to write. """ with tf.Session(graph=tf.Graph()) as session: input_var = tf.placeholder(tf.uint8, (None, ) + image_shape) image_var = tf.map_fn( lambda x: preprocess_fn(x, is_training=False), input_var, back_prop=False, dtype=tf.float32) network_factory(image_var) loader = tf.train.Saver(slim.get_variables_to_restore()) loader.restore(session, checkpoint_path) saver = tf.train.Saver(slim.get_model_variables()) saver.save(session, output_filename, global_step=None)
Example #29
Source File: model.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def build_inceptionv3_graph(images, endpoint, is_training, checkpoint, reuse=False): """Builds an InceptionV3 model graph. Args: images: A 4-D float32 `Tensor` of batch images. endpoint: String, name of the InceptionV3 endpoint. is_training: Boolean, whether or not to build a training or inference graph. checkpoint: String, path to the pretrained model checkpoint. reuse: Boolean, whether or not we are reusing the embedder. Returns: inception_output: `Tensor` holding the InceptionV3 output. inception_variables: List of inception variables. init_fn: Function to initialize the weights (if not reusing, then None). """ with slim.arg_scope(inception.inception_v3_arg_scope()): _, endpoints = inception.inception_v3( images, num_classes=1001, is_training=is_training) inception_output = endpoints[endpoint] inception_variables = slim.get_variables_to_restore() inception_variables = [ i for i in inception_variables if 'global_step' not in i.name] if is_training and not reuse: init_saver = tf.train.Saver(inception_variables) def init_fn(scaffold, sess): del scaffold init_saver.restore(sess, checkpoint) else: init_fn = None return inception_output, inception_variables, init_fn
Example #30
Source File: utils.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def variables_to_restore(scope=None, strip_scope=False): """Returns a list of variables to restore for the specified list of methods. It is supposed that variable name starts with the method's scope (a prefix returned by _method_scope function). Args: methods_names: a list of names of configurable methods. strip_scope: if True will return variable names without method's scope. If methods_names is None will return names unchanged. model_scope: a scope for a whole model. Returns: a dictionary mapping variable names to variables for restore. """ if scope: variable_map = {} method_variables = slim.get_variables_to_restore(include=[scope]) for var in method_variables: if strip_scope: var_name = var.op.name[len(scope) + 1:] else: var_name = var.op.name variable_map[var_name] = var return variable_map else: return {v.op.name: v for v in slim.get_variables_to_restore()}