Python tensorflow.contrib.slim.l2_regularizer() Examples
The following are 30
code examples of tensorflow.contrib.slim.l2_regularizer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.slim
, or try the search function
.
Example #1
Source File: matrix_regression_model.py From youtube-8m with Apache License 2.0 | 6 votes |
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, **unused_params): """Creates a matrix regression model. Args: model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features. vocab_size: The number of classes in the dataset. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.""" num_features = model_input.get_shape().as_list()[-2] num_methods = model_input.get_shape().as_list()[-1] weight1d = tf.get_variable("ensemble_weight1d", shape=[num_methods], regularizer=slim.l2_regularizer(l2_penalty)) weight2d = tf.get_variable("ensemble_weight2d", shape=[num_features, num_methods], regularizer=slim.l2_regularizer(10 * l2_penalty)) weight = tf.nn.softmax(tf.einsum("ij,j->ij", weight2d, weight1d), dim=-1) output = tf.einsum("ijk,jk->ij", model_input, weight) return {"predictions": output}
Example #2
Source File: nonunit_matrix_regression_model.py From youtube-8m with Apache License 2.0 | 6 votes |
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, epsilon=1e-5, **unused_params): """Creates a non-unified matrix regression model. Args: model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features. vocab_size: The number of classes in the dataset. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.""" num_features = model_input.get_shape().as_list()[-2] num_methods = model_input.get_shape().as_list()[-1] log_model_input = tf.stop_gradient(tf.log((epsilon + model_input) / (1.0 + epsilon - model_input))) weight = tf.get_variable("ensemble_weight", shape=[num_features, num_methods], regularizer=slim.l2_regularizer(l2_penalty)) weight = tf.nn.softmax(weight) output = tf.nn.sigmoid(tf.einsum("ijk,jk->ij", log_model_input, weight)) return {"predictions": output}
Example #3
Source File: seglink_symbol.py From seglink with GNU General Public License v3.0 | 6 votes |
def _build_network(self): with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(self.weight_decay), weights_initializer= self.weights_initializer, biases_initializer = self.biases_initializer): with slim.arg_scope([slim.conv2d, slim.max_pool2d], padding='SAME', data_format = self.data_format): with tf.variable_scope(self.basenet_type): basenet, end_points = net_factory.get_basenet(self.basenet_type, self.inputs); with tf.variable_scope('extra_layers'): self.net, self.end_points = self._add_extra_layers(basenet, end_points); with tf.variable_scope('seglink_layers'): self._add_seglink_layers();
Example #4
Source File: input_moe_model.py From youtube-8m with Apache License 2.0 | 6 votes |
def create_model(self, model_input, vocab_size, num_mixtures=None, l2_penalty=1e-8, sub_scope="", original_input=None, **unused_params): num_methods = model_input.get_shape().as_list()[-1] num_features = model_input.get_shape().as_list()[-2] original_input = tf.nn.l2_normalize(original_input, dim=1) gate_activations = slim.fully_connected( original_input, num_methods, activation_fn=tf.nn.softmax, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates"+sub_scope) output = tf.einsum("ijk,ik->ij", model_input, gate_activations) return {"predictions": output}
Example #5
Source File: resnet_v1.py From SSH-TensorFlow with MIT License | 6 votes |
def resnet_arg_scope(is_training=True, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': tf.GraphKeys.UPDATE_OPS } with arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), weights_initializer=slim.variance_scaling_initializer(), trainable=is_training, activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc: return arg_sc
Example #6
Source File: squeezenet.py From tf_ctpn with MIT License | 6 votes |
def _arg_scope(self, is_training, reuse=None): weight_decay = 0.0 keep_probability = 1.0 batch_norm_params = { 'is_training': is_training, # Decay for the moving averages. 'decay': 0.995, # epsilon to prevent 0s in variance. 'epsilon': 0.001 } with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=slim.xavier_initializer_conv2d(uniform=True), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with tf.variable_scope(self._scope, self._scope, reuse=reuse): with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training) as sc: return sc
Example #7
Source File: dfc_vae.py From TNT with GNU General Public License v3.0 | 6 votes |
def encoder(self, images, is_training): activation_fn = leaky_relu # tf.nn.relu weight_decay = 0.0 with tf.variable_scope('encoder'): with slim.arg_scope([slim.batch_norm], is_training=is_training): with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=self.batch_norm_params): net = slim.conv2d(images, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1') net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2') net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3') net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4') net = slim.flatten(net) fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1') fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2') return fc1, fc2
Example #8
Source File: dfc_vae_large.py From TNT with GNU General Public License v3.0 | 6 votes |
def encoder(self, images, is_training): activation_fn = leaky_relu # tf.nn.relu weight_decay = 0.0 with tf.variable_scope('encoder'): with slim.arg_scope([slim.batch_norm], is_training=is_training): with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=self.batch_norm_params): net = slim.conv2d(images, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1') net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2') net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3') net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4') net = slim.conv2d(net, 512, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_5') net = slim.flatten(net) fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1') fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2') return fc1, fc2
Example #9
Source File: inception_resnet_v1.py From TNT with GNU General Public License v3.0 | 6 votes |
def inference(images, keep_probability, phase_train=True, bottleneck_layer_size=128, weight_decay=0.0, reuse=None): batch_norm_params = { # Decay for the moving averages. 'decay': 0.995, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ], } with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): return inception_resnet_v1(images, is_training=phase_train, dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
Example #10
Source File: dummy.py From TNT with GNU General Public License v3.0 | 6 votes |
def inference(images, keep_probability, phase_train=True, # @UnusedVariable bottleneck_layer_size=128, bottleneck_layer_activation=None, weight_decay=0.0, reuse=None): # @UnusedVariable batch_norm_params = { # Decay for the moving averages. 'decay': 0.995, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ], } with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): size = np.prod(images.get_shape()[1:].as_list()) net = slim.fully_connected(tf.reshape(images, (-1,size)), bottleneck_layer_size, activation_fn=None, scope='Bottleneck', reuse=False) return net, None
Example #11
Source File: resnet_gluoncv_r3det_plusplus.py From R3Det_Tensorflow with MIT License | 6 votes |
def resnet_arg_scope(freeze_norm, is_training=True, weight_decay=0.0001, batch_norm_decay=0.9, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': tf.GraphKeys.UPDATE_OPS, 'data_format': DATA_FORMAT } with slim.arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=slim.variance_scaling_initializer(), trainable=is_training, activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc: return arg_sc
Example #12
Source File: inception_resnet_v2.py From TNT with GNU General Public License v3.0 | 6 votes |
def inference(images, keep_probability, phase_train=True, bottleneck_layer_size=128, weight_decay=0.0, reuse=None): batch_norm_params = { # Decay for the moving averages. 'decay': 0.995, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ], } with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): return inception_resnet_v2(images, is_training=phase_train, dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
Example #13
Source File: pyramid_network.py From FastMaskRCNN with Apache License 2.0 | 6 votes |
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None): with slim.arg_scope( [slim.conv2d, slim.conv2d_transpose], padding='SAME', weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=tf.truncated_normal_initializer(stddev=0.001), activation_fn=activation_fn, normalizer_fn=normalizer_fn,) as arg_sc: with slim.arg_scope( [slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=tf.truncated_normal_initializer(stddev=0.001), activation_fn=activation_fn, normalizer_fn=normalizer_fn) as arg_sc: return arg_sc
Example #14
Source File: pyramid_network.py From FastMaskRCNN with Apache License 2.0 | 6 votes |
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001, activation_fn=None, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'updates_collections': tf.GraphKeys.UPDATE_OPS, } with slim.arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=slim.variance_scaling_initializer(), activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc: return arg_sc
Example #15
Source File: resnet_gluoncv_r3det.py From R3Det_Tensorflow with MIT License | 6 votes |
def resnet_arg_scope(freeze_norm, is_training=True, weight_decay=0.0001, batch_norm_decay=0.9, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': tf.GraphKeys.UPDATE_OPS, 'data_format': DATA_FORMAT } with slim.arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=slim.variance_scaling_initializer(), trainable=is_training, activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc: return arg_sc
Example #16
Source File: resnet_v1.py From tf_ctpn with MIT License | 6 votes |
def resnet_arg_scope(is_training=True, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': tf.GraphKeys.UPDATE_OPS } with arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), weights_initializer=slim.variance_scaling_initializer(), trainable=is_training, activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc: return arg_sc
Example #17
Source File: models.py From Brats2019 with MIT License | 6 votes |
def conv3d( input, output_chn, kernel_size, stride, use_bias=False, name='conv'): return tf.layers.conv3d( inputs=input, filters=output_chn, kernel_size=kernel_size, strides=stride, padding='same', data_format='channels_last', kernel_initializer=tf.truncated_normal_initializer( 0.0, 0.01), kernel_regularizer=slim.l2_regularizer(0.0005), use_bias=use_bias, name=name)
Example #18
Source File: models.py From Brats2019 with MIT License | 6 votes |
def Unsample(input, output_chn, name): batch, in_depth, in_height, in_width, in_channels = [ int(d) for d in input.get_shape()] base = input.shape[-2] data = 96 / int(base) print("base shape", data) filter = tf.get_variable( name + "/filter", shape=[ 4, 4, 4, output_chn, in_channels], dtype=tf.float32, initializer=tf.random_normal_initializer( 0, 0.01), regularizer=slim.l2_regularizer(0.0005)) conv = tf.nn.conv3d_transpose( value=input, filter=filter, output_shape=[ batch, 96, 96, 96, output_chn], strides=[ 1, data, data, data, 1], padding="SAME", name=name) return conv
Example #19
Source File: resnet_gluoncv.py From R3Det_Tensorflow with MIT License | 6 votes |
def resnet_arg_scope(freeze_norm, is_training=True, weight_decay=0.0001, batch_norm_decay=0.9, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': tf.GraphKeys.UPDATE_OPS, 'data_format': DATA_FORMAT } with slim.arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=slim.variance_scaling_initializer(), trainable=is_training, activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc: return arg_sc
Example #20
Source File: hidden_combine_chain_model.py From youtube-8m with Apache License 2.0 | 6 votes |
def create_model(self, model_input, vocab_size, num_mixtures=None, l2_penalty=1e-8, sub_scope="", original_input=None, **unused_params): num_supports = FLAGS.num_supports num_layers = FLAGS.hidden_chain_layers relu_cells = FLAGS.hidden_chain_relu_cells next_input = model_input support_predictions = [] for layer in xrange(num_layers): sub_relu = slim.fully_connected( next_input, relu_cells, activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty), scope=sub_scope+"relu-%d"%layer) sub_prediction = self.sub_model(sub_relu, vocab_size, sub_scope=sub_scope+"prediction-%d"%layer) relu_norm = tf.nn.l2_normalize(sub_relu, dim=1) next_input = tf.concat([next_input, relu_norm], axis=1) support_predictions.append(sub_prediction) main_predictions = self.sub_model(next_input, vocab_size, sub_scope=sub_scope+"-main") support_predictions = tf.concat(support_predictions, axis=1) return {"predictions": main_predictions, "support_predictions": support_predictions}
Example #21
Source File: chain_main_relu_moe_model.py From youtube-8m with Apache License 2.0 | 5 votes |
def sub_model(self, model_input, vocab_size, num_mixtures=None, l2_penalty=1e-8, sub_scope="", **unused_params): num_mixtures = num_mixtures or FLAGS.moe_num_mixtures gate_activations = slim.fully_connected( model_input, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates-"+sub_scope) expert_activations = slim.fully_connected( model_input, vocab_size * num_mixtures, activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="experts-"+sub_scope) gating_distribution = tf.nn.softmax(tf.reshape( gate_activations, [-1, num_mixtures + 1])) # (Batch * #Labels) x (num_mixtures + 1) expert_distribution = tf.nn.sigmoid(tf.reshape( expert_activations, [-1, num_mixtures])) # (Batch * #Labels) x num_mixtures final_probabilities_by_class_and_batch = tf.reduce_sum( gating_distribution[:, :num_mixtures] * expert_distribution, 1) final_probabilities = tf.reshape(final_probabilities_by_class_and_batch, [-1, vocab_size]) return final_probabilities
Example #22
Source File: logistic_model.py From youtube-8m with Apache License 2.0 | 5 votes |
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, **unused_params): """Creates a logistic model. Args: model_input: 'batch' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.""" output = slim.fully_connected( model_input, vocab_size, activation_fn=tf.nn.sigmoid, weights_regularizer=slim.l2_regularizer(l2_penalty)) return {"predictions": output}
Example #23
Source File: attention_linear_model.py From youtube-8m with Apache License 2.0 | 5 votes |
def create_model(self, model_input, vocab_size, num_mixtures=None, l2_penalty=1e-8, sub_scope="", original_input=None, **unused_params): num_methods = model_input.get_shape().as_list()[-1] num_features = model_input.get_shape().as_list()[-2] num_mixtures = FLAGS.moe_num_mixtures # gating coefficients original_input = tf.nn.l2_normalize(original_input, dim=1) mean_output = tf.reduce_mean(model_input, axis=2) ## batch_size x moe_num_mixtures gate_activations = slim.fully_connected( tf.concat([original_input, mean_output], axis=1), num_mixtures, activation_fn=tf.nn.softmax, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates"+sub_scope) # matrix weight_var = tf.get_variable("ensemble_weight", shape=[num_mixtures, num_methods], regularizer=slim.l2_regularizer(l2_penalty)) # weight gated_weight = tf.einsum("ij,jk->ik", gate_activations, weight_var) weight = tf.nn.softmax(gated_weight) # weighted output output = tf.einsum("ik,ijk->ij", weight, model_input) return {"predictions": output}
Example #24
Source File: attention_moe_matrix_model.py From youtube-8m with Apache License 2.0 | 5 votes |
def relu(self, model_input, relu_cells, l2_penalty=1e-8, sub_scope=""): sub_activation = slim.fully_connected( model_input, relu_cells, activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="relu-"+sub_scope) return sub_activation
Example #25
Source File: attention_rectified_linear_model.py From youtube-8m with Apache License 2.0 | 5 votes |
def create_model(self, model_input, vocab_size, num_mixtures=None, l2_penalty=1e-8, sub_scope="", original_input=None, **unused_params): num_methods = model_input.get_shape().as_list()[-1] num_features = model_input.get_shape().as_list()[-2] num_mixtures = FLAGS.moe_num_mixtures # gating coefficients original_input = tf.nn.l2_normalize(original_input, dim=1) mean_output = tf.reduce_mean(model_input, axis=2) ## batch_size x moe_num_mixtures gate_activations = slim.fully_connected( tf.concat([original_input, mean_output], axis=1), num_mixtures, activation_fn=tf.nn.softmax, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates"+sub_scope) # matrix weight_var = tf.get_variable("ensemble_weight", shape=[num_mixtures, num_methods], regularizer=slim.l2_regularizer(l2_penalty)) # weight gated_weight = tf.einsum("ij,jk->ik", gate_activations, weight_var) rl_gated_weight = tf.nn.relu(gated_weight) + 1e-9 sum_gated_weight = tf.reduce_sum(rl_gated_weight, axis=1, keep_dims=True) weight = rel_gated_weight / sum_gated_weight # weighted output output = tf.einsum("ik,ijk->ij", weight, model_input) return {"predictions": output}
Example #26
Source File: build_whole_network_r3det_csl.py From R3Det_Tensorflow with MIT License | 5 votes |
def refine_net(self, feature_pyramid, name): refine_delta_boxes_list = [] refine_scores_list = [] refine_probs_list = [] refine_angle_cls_list = [] with tf.variable_scope(name): with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(cfgs.WEIGHT_DECAY)): for level in cfgs.LEVEL: if cfgs.SHARE_NET: reuse_flag = None if level == 'P3' else True scope_list = ['conv2d_3x3_cls', 'conv2d_3x3_reg', 'refine_classification', 'refine_regression', 'rpn_angle_cls'] else: reuse_flag = None scope_list = ['conv2d_3x3_cls_' + level, 'conv2d_3x3_reg_' + level, 'refine_classification_' + level, 'refine_regression_' + level, 'refine_angle_cls_' + level] refine_box_scores, refine_box_probs = self.refine_cls_net(feature_pyramid[level], scope_list, reuse_flag, level) refine_delta_boxes, refine_angle_cls = self.refine_reg_net(feature_pyramid[level], scope_list, reuse_flag, level) # refine_angle_cls = self.refine_angle_net(feature_pyramid[level], scope_list, # reuse_flag, level) refine_scores_list.append(refine_box_scores) refine_probs_list.append(refine_box_probs) refine_delta_boxes_list.append(refine_delta_boxes) refine_angle_cls_list.append(refine_angle_cls) # refine_all_delta_boxes = tf.concat(refine_delta_boxes_list, axis=0) # refine_all_boxes_scores = tf.concat(refine_scores_list, axis=0) # refine_all_boxes_probs = tf.concat(refine_probs_list, axis=0) return refine_delta_boxes_list, refine_scores_list, refine_probs_list, refine_angle_cls_list
Example #27
Source File: build_whole_network_r3det.py From R3Det_Tensorflow with MIT License | 5 votes |
def refine_net(self, feature_pyramid, name): refine_delta_boxes_list = [] refine_scores_list = [] refine_probs_list = [] with tf.variable_scope(name): with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(cfgs.WEIGHT_DECAY)): for level in cfgs.LEVEL: if cfgs.SHARE_NET: reuse_flag = None if level == cfgs.LEVEL[0] else True scope_list = ['conv2d_3x3_cls', 'conv2d_3x3_reg', 'refine_classification', 'refine_regression'] else: reuse_flag = None scope_list = ['conv2d_3x3_cls_' + level, 'conv2d_3x3_reg_' + level, 'refine_classification_' + level, 'refine_regression_' + level] refine_box_scores, refine_box_probs = self.refine_cls_net(feature_pyramid[level], scope_list, reuse_flag, level) refine_delta_boxes = self.refine_reg_net(feature_pyramid[level], scope_list, reuse_flag, level) refine_scores_list.append(refine_box_scores) refine_probs_list.append(refine_box_probs) refine_delta_boxes_list.append(refine_delta_boxes) # refine_all_delta_boxes = tf.concat(refine_delta_boxes_list, axis=0) # refine_all_boxes_scores = tf.concat(refine_scores_list, axis=0) # refine_all_boxes_probs = tf.concat(refine_probs_list, axis=0) return refine_delta_boxes_list, refine_scores_list, refine_probs_list
Example #28
Source File: build_whole_network_r3det.py From R3Det_Tensorflow with MIT License | 5 votes |
def rpn_net(self, feature_pyramid, name): rpn_delta_boxes_list = [] rpn_scores_list = [] rpn_probs_list = [] with tf.variable_scope(name): with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(cfgs.WEIGHT_DECAY)): for level in cfgs.LEVEL: if cfgs.SHARE_NET: reuse_flag = None if level == cfgs.LEVEL[0] else True scope_list = ['conv2d_3x3_cls', 'conv2d_3x3_reg', 'rpn_classification', 'rpn_regression'] else: reuse_flag = None scope_list = ['conv2d_3x3_cls_' + level, 'conv2d_3x3_reg_' + level, 'rpn_classification_' + level, 'rpn_regression_' + level] rpn_box_scores, rpn_box_probs = self.rpn_cls_net(feature_pyramid[level], scope_list, reuse_flag, level) rpn_delta_boxes = self.rpn_reg_net(feature_pyramid[level], scope_list, reuse_flag, level) rpn_scores_list.append(rpn_box_scores) rpn_probs_list.append(rpn_box_probs) rpn_delta_boxes_list.append(rpn_delta_boxes) # rpn_all_delta_boxes = tf.concat(rpn_delta_boxes_list, axis=0) # rpn_all_boxes_scores = tf.concat(rpn_scores_list, axis=0) # rpn_all_boxes_probs = tf.concat(rpn_probs_list, axis=0) return rpn_delta_boxes_list, rpn_scores_list, rpn_probs_list
Example #29
Source File: sequence_layers.py From DOTA_models with Apache License 2.0 | 5 votes |
def __init__(self, net, labels_one_hot, model_params, method_params): """Stores argument in member variable for further use. Args: net: A tensor with shape [batch_size, num_features, feature_size] which contains some extracted image features. labels_one_hot: An optional (can be None) ground truth labels for the input features. Is a tensor with shape [batch_size, seq_length, num_char_classes] model_params: A namedtuple with model parameters (model.ModelParams). method_params: A SequenceLayerParams instance. """ self._params = model_params self._mparams = method_params self._net = net self._labels_one_hot = labels_one_hot self._batch_size = net.get_shape().dims[0].value # Initialize parameters for char logits which will be computed on the fly # inside an LSTM decoder. self._char_logits = {} regularizer = slim.l2_regularizer(self._mparams.weight_decay) self._softmax_w = slim.model_variable( 'softmax_w', [self._mparams.num_lstm_units, self._params.num_char_classes], initializer=orthogonal_initializer, regularizer=regularizer) self._softmax_b = slim.model_variable( 'softmax_b', [self._params.num_char_classes], initializer=tf.zeros_initializer(), regularizer=regularizer)
Example #30
Source File: build_whole_network_r3det_efficientnet.py From R3Det_Tensorflow with MIT License | 5 votes |
def rpn_net(self, feature_pyramid, name): rpn_delta_boxes_list = [] rpn_scores_list = [] rpn_probs_list = [] with tf.variable_scope(name): with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(cfgs.WEIGHT_DECAY)): for level in cfgs.LEVEL: if cfgs.SHARE_NET: reuse_flag = None if level == cfgs.LEVEL[0] else True scope_list = ['conv2d_3x3_cls', 'conv2d_3x3_reg', 'rpn_classification', 'rpn_regression'] else: reuse_flag = None scope_list = ['conv2d_3x3_cls_' + level, 'conv2d_3x3_reg_' + level, 'rpn_classification_' + level, 'rpn_regression_' + level] rpn_box_scores, rpn_box_probs = self.rpn_cls_net(feature_pyramid[level], scope_list, reuse_flag, level) rpn_delta_boxes = self.rpn_reg_net(feature_pyramid[level], scope_list, reuse_flag, level) rpn_scores_list.append(rpn_box_scores) rpn_probs_list.append(rpn_box_probs) rpn_delta_boxes_list.append(rpn_delta_boxes) # rpn_all_delta_boxes = tf.concat(rpn_delta_boxes_list, axis=0) # rpn_all_boxes_scores = tf.concat(rpn_scores_list, axis=0) # rpn_all_boxes_probs = tf.concat(rpn_probs_list, axis=0) return rpn_delta_boxes_list, rpn_scores_list, rpn_probs_list