Python lasagne.nonlinearities.sigmoid() Examples
The following are 30
code examples of lasagne.nonlinearities.sigmoid().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
lasagne.nonlinearities
, or try the search function
.
Example #1
Source File: conv_sup_cc_mllsll.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network_mll = layers.DenseLayer(incoming = hidden_layer, num_units = 12, nonlinearity = sigmoid); network_sll = layers.DenseLayer(incoming = hidden_layer, num_units = 7, nonlinearity = sigmoid); network = lasagne.layers.ConcatLayer([network_mll, network_sll], axis = 1); return network, encode_layer, input_var, aug_var, target_var;
Example #2
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn, fea_len): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); fea_var = T.matrix('fea_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, fea_var, target_var;
Example #3
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #4
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn, fea_len): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); fea_var = T.matrix('fea_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, fea_var, target_var;
Example #5
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #6
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #7
Source File: conv_sup_cc_4ch.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model_4ch/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 4, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #8
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn, fea_len): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); fea_var = T.matrix('fea_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, fea_var, target_var;
Example #9
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #10
Source File: conv_sup_cc_4ch_rot.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model_4ch_rot/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 4, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #11
Source File: conv_sup_cc_mllsll.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network_mll = layers.DenseLayer(incoming = hidden_layer, num_units = 12, nonlinearity = sigmoid); network_sll = layers.DenseLayer(incoming = hidden_layer, num_units = 7, nonlinearity = sigmoid); network = lasagne.layers.ConcatLayer([network_mll, network_sll], axis = 1); return network, encode_layer, input_var, aug_var, target_var;
Example #12
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn, fea_len): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); fea_var = T.matrix('fea_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, fea_var, target_var;
Example #13
Source File: lsgan_cifar10.py From Theano-MPI with Educational Community License v2.0 | 6 votes |
def build_critic(input_var=None, verbose=False): from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer, DenseLayer) try: from lasagne.layers.dnn import batch_norm_dnn as batch_norm except ImportError: from lasagne.layers import batch_norm from lasagne.nonlinearities import LeakyRectify, sigmoid lrelu = LeakyRectify(0.2) # input: (None, 1, 28, 28) layer = InputLayer(shape=(None, 3, 32, 32), input_var=input_var) # two convolutions layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same', nonlinearity=lrelu)) layer = batch_norm(Conv2DLayer(layer, 256, 5, stride=2, pad='same', nonlinearity=lrelu)) layer = batch_norm(Conv2DLayer(layer, 512, 5, stride=2, pad='same', nonlinearity=lrelu)) # # fully-connected layer # layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu)) # output layer (linear) layer = DenseLayer(layer, 1, nonlinearity=None) if verbose: print ("critic output:", layer.output_shape) return layer
Example #14
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn, fea_len): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); fea_var = T.matrix('fea_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, fea_var, target_var;
Example #15
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn, fea_len): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); fea_var = T.matrix('fea_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, fea_var, target_var;
Example #16
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #17
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #18
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn, fea_len): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); fea_var = T.matrix('fea_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, fea_var, target_var;
Example #19
Source File: conv_sup_cc_4ch_rot.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model_4ch_rot/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 4, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #20
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #21
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn, fea_len): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); fea_var = T.matrix('fea_var'); target_var = T.imatrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, fea_var, target_var;
Example #22
Source File: conv_sup_cc_mllsll.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network_mll = layers.DenseLayer(incoming = hidden_layer, num_units = 12, nonlinearity = sigmoid); network_sll = layers.DenseLayer(incoming = hidden_layer, num_units = 7, nonlinearity = sigmoid); network = lasagne.layers.ConcatLayer([network_mll, network_sll], axis = 1); return network, encode_layer, input_var, aug_var, target_var;
Example #23
Source File: conv_sup_cc_4ch.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model_4ch/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 4, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #24
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #25
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_discriminator_toy(image=None, nd=512, GP_norm=None): Input = InputLayer(shape=(None, 2), input_var=image) print ("Dis input:", Input.output_shape) dis0 = DenseLayer(Input, nd, W=Normal(0.02), nonlinearity=relu) print ("Dis fc0:", dis0.output_shape) if GP_norm is True: dis1 = DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu) else: dis1 = batch_norm(DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu)) print ("Dis fc1:", dis1.output_shape) if GP_norm is True: dis2 = batch_norm(DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu)) else: dis2 = DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu) print ("Dis fc2:", dis2.output_shape) disout = DenseLayer(dis2, 1, W=Normal(0.02), nonlinearity=sigmoid) print ("Dis output:", disout.output_shape) return disout
Example #26
Source File: conv_sup_cc_mllsll.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network_mll = layers.DenseLayer(incoming = hidden_layer, num_units = 12, nonlinearity = sigmoid); network_sll = layers.DenseLayer(incoming = hidden_layer, num_units = 7, nonlinearity = sigmoid); network = lasagne.layers.ConcatLayer([network_mll, network_sll], axis = 1); return network, encode_layer, input_var, aug_var, target_var;
Example #27
Source File: conv_sup_cc_4ch.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model_4ch/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 4, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #28
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #29
Source File: conv_sup_cc_mllsll.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network_mll = layers.DenseLayer(incoming = hidden_layer, num_units = 12, nonlinearity = sigmoid); network_sll = layers.DenseLayer(incoming = hidden_layer, num_units = 7, nonlinearity = sigmoid); network = lasagne.layers.ConcatLayer([network_mll, network_sll], axis = 1); return network, encode_layer, input_var, aug_var, target_var;
Example #30
Source File: conv_sup_cc_4ch_rot.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model_4ch_rot/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 4, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;