Python datasets.dataset_utils.download_and_uncompress_tarball() Examples

The following are 30 code examples of datasets.dataset_utils.download_and_uncompress_tarball(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module datasets.dataset_utils , or try the search function .
Example #1
Source File: download_and_convert_cifar10.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #2
Source File: download_and_convert_flowers.py    From nasnet-tensorflow with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #3
Source File: download_and_convert_cifar10.py    From HumanRecognition with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #4
Source File: convert_customized.py    From nasnet-tensorflow with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

#  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  #_clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the customized dataset at directory: {0}'.format(dataset_dir)) 
Example #5
Source File: download_and_convert_cifar10.py    From DirectML with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #6
Source File: download_and_convert_flowers.py    From DirectML with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #7
Source File: download_and_convert_cifar10.py    From motion-rcnn with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #8
Source File: download_and_convert_flowers.py    From motion-rcnn with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #9
Source File: download_and_convert_cifar10.py    From mtl-ssl with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #10
Source File: download_and_convert_flowers.py    From mtl-ssl with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #11
Source File: download_and_convert_cifar10.py    From multilabel-image-classification-tensorflow with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #12
Source File: download_and_convert_flowers.py    From multilabel-image-classification-tensorflow with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #13
Source File: download_and_convert_flowers.py    From models with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(
      list(zip(class_names, list(range(len(class_names))))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(
      list(zip(list(range(len(class_names))), class_names)))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #14
Source File: download_and_convert_cifar10.py    From MAX-Object-Detector with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #15
Source File: download_and_convert_flowers.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #16
Source File: download_and_convert_flowers.py    From MAX-Object-Detector with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #17
Source File: convert_ucf11.py    From Optical-Flow-Guided-Feature with MIT License 5 votes vote down vote up
def test(dataset_dir):
    """Test the download and conversion operation.

    Args:
      dataset_dir: The dataset directory where the dataset is stored.
    """
    if not tf.gfile.Exists(dataset_dir):
        tf.gfile.MakeDirs(dataset_dir)

    if _dataset_exists(dataset_dir):
        print('Dataset files already exist. Exiting without re-creating them.')
        return

    # dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
    train_filenames, test_filenames, class_names = _get_filenames_and_classes(dataset_dir)
    class_names_to_ids = dict(zip(class_names, range(len(class_names))))

    # Divide into train and test:
    random.seed(_RANDOM_SEED)
    random.shuffle(train_filenames)

    num_train = math.ceil(len(train_filenames) * _RATIO_TRAIN)

    training_filenames = train_filenames[:num_train]
    validation_filenames = train_filenames[num_train:]

    print('Number training file names:', len(training_filenames))
    print('Number validation file names:', len(validation_filenames))
    print('Number test file names:', len(test_filenames))

    print('Test convert video')
    video_reader = VideoReader()
    filename_sample = training_filenames[0]
    video_data, frame_count, height, width, ori_height, ori_width = video_reader.convert_video_to_numpy(filename_sample)
    print('Class:', _get_class_in_filename(filename_sample))
    print('Video size: %dx%dx%d' % (frame_count, ori_height, ori_width))
    print('Show video')
    for i in range(frame_count):
        cv2.imshow(_get_class_in_filename(filename_sample), video_data[i])
        cv2.waitKey(0)
    cv2.destroyAllWindows() 
Example #18
Source File: download_and_convert_flowers.py    From MBMD with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #19
Source File: download_and_convert_cifar10.py    From MBMD with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #20
Source File: download_and_convert_flowers.py    From object_detection_kitti with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #21
Source File: download_and_convert_cifar10.py    From object_detection_kitti with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #22
Source File: convert_flowers.py    From SSD_tensorflow_VOC with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
    """Runs the download and conversion operation.

    Args:
        dataset_dir: The dataset directory where the dataset is stored.
    """
    if not tf.gfile.Exists(dataset_dir):
        tf.gfile.MakeDirs(dataset_dir)

    if _dataset_exists(dataset_dir):
        print('Dataset files already exist. Exiting without re-creating them.')
        return

    dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
    photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
    class_names_to_ids = dict(zip(class_names, range(len(class_names))))

    # Divide into train and test:
    random.seed(_RANDOM_SEED)
    random.shuffle(photo_filenames)
    training_filenames = photo_filenames[_NUM_VALIDATION:]
    validation_filenames = photo_filenames[:_NUM_VALIDATION]

    # First, convert the training and validation sets.
    _convert_dataset('train', training_filenames, class_names_to_ids,
                                     dataset_dir)
    _convert_dataset('validation', validation_filenames, class_names_to_ids,
                                     dataset_dir)

    # Finally, write the labels file:
    labels_to_class_names = dict(zip(range(len(class_names)), class_names))
    dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

    _clean_up_temporary_files(dataset_dir)
    print('\nFinished converting the Flowers dataset!') 
Example #23
Source File: download_and_convert_flowers.py    From hands-detection with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #24
Source File: download_and_convert_cifar10.py    From hands-detection with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #25
Source File: download_and_convert_flowers.py    From ECO-pytorch with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #26
Source File: download_and_convert_cifar10.py    From ECO-pytorch with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #27
Source File: download_and_convert_flowers.py    From Action_Recognition_Zoo with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #28
Source File: download_and_convert_cifar10.py    From Action_Recognition_Zoo with MIT License 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!') 
Example #29
Source File: download_and_convert_flowers.py    From tensorflow-densenet with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
                   dataset_dir)
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
                   dataset_dir)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Flowers dataset!') 
Example #30
Source File: download_and_convert_cifar10.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)

  training_filename = _get_output_filename(dataset_dir, 'train')
  testing_filename = _get_output_filename(dataset_dir, 'test')

  if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
    print('Dataset files already exist. Exiting without re-creating them.')
    return

  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)

  # First, process the training data:
  with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
    offset = 0
    for i in range(_NUM_TRAIN_FILES):
      filename = os.path.join(dataset_dir,
                              'cifar-10-batches-py',
                              'data_batch_%d' % (i + 1))  # 1-indexed.
      offset = _add_to_tfrecord(filename, tfrecord_writer, offset)

  # Next, process the testing data:
  with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
    filename = os.path.join(dataset_dir,
                            'cifar-10-batches-py',
                            'test_batch')
    _add_to_tfrecord(filename, tfrecord_writer)

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

  _clean_up_temporary_files(dataset_dir)
  print('\nFinished converting the Cifar10 dataset!')