Python datasets.dataset_utils.image_to_tfexample() Examples

The following are 30 code examples of datasets.dataset_utils.image_to_tfexample(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module datasets.dataset_utils , or try the search function .
Example #1
Source File: download_and_convert_fer.py    From uai-sdk with Apache License 2.0 6 votes vote down vote up
def _add_to_tfrecord(filename, tfrecord_writer,labels_to_class_names, offset=0):
  """Loads pic data from the filename and writes files to a TFRecord.

  Args:
    filename: The filename of one picture .
    tfrecord_writer: The TFRecord writer to use for writing.
    offset: An offset into the absolute number of images previously written.

  Returns:
    The new offset.
  """
  image = tf.gfile.FastGFile(filename,'r').read()
  label = labels_to_class_names[filename.split('/')[-2]]

  with tf.Graph().as_default():
    with tf.Session('') as sess:
      example = dataset_utils.image_to_tfexample(
            image, b'jpg', _IMAGE_SIZE_HEIGHT, _IMAGE_SIZE_WIDTH, label)
      tfrecord_writer.write(example.SerializeToString())

  return offset + 1 
Example #2
Source File: download_and_convert_mnist.py    From tensorflow_yolo2 with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #3
Source File: download_and_convert_mnist.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #4
Source File: download_and_convert_mnist.py    From edafa with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #5
Source File: download_and_convert_mnist.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #6
Source File: download_and_convert_mnist.py    From ctw-baseline with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #7
Source File: download_and_convert_mnist.py    From morph-net with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #8
Source File: download_and_convert_mnist.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #9
Source File: download_and_convert_mnist.py    From MBMD with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #10
Source File: download_and_convert_mnist.py    From CVTron with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #11
Source File: download_and_convert_mnist.py    From object_detection_kitti with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #12
Source File: download_and_convert_mnist.py    From hands-detection with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #13
Source File: download_and_convert_mnist.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #14
Source File: download_and_convert_mnist.py    From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #15
Source File: download_and_convert_mnist.py    From Gun-Detector with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #16
Source File: download_and_convert_mnist.py    From Action_Recognition_Zoo with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png', _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #17
Source File: download_and_convert_mnist.py    From Creative-Adversarial-Networks with MIT License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #18
Source File: download_and_convert_mnist.py    From tensorflow-densenet with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #19
Source File: download_and_convert_mnist.py    From BMW-TensorFlow-Training-GUI with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #20
Source File: download_and_convert_mnist.py    From terngrad with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j],
            _CLASS_NAMES[labels[j]], channels=1)
        tfrecord_writer.write(example.SerializeToString()) 
Example #21
Source File: download_and_convert_svhn.py    From TwinGAN with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary svhn files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the svhn images.
    labels_filename: The filename of the svhn labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(data_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #22
Source File: download_and_convert_mnist.py    From hops-tensorflow with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #23
Source File: download_and_convert_mnist.py    From tumblr-emotions with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #24
Source File: download_and_convert_mnist.py    From MobileNet with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #25
Source File: download_and_convert_mnist.py    From MAX-Image-Segmenter with Apache License 2.0 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #26
Source File: download_and_convert_mnist.py    From ECO-pytorch with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def _add_to_tfrecord(data_filename, labels_filename, num_images,
                     tfrecord_writer):
  """Loads data from the binary MNIST files and writes files to a TFRecord.

  Args:
    data_filename: The filename of the MNIST images.
    labels_filename: The filename of the MNIST labels.
    num_images: The number of images in the dataset.
    tfrecord_writer: The TFRecord writer to use for writing.
  """
  images = _extract_images(data_filename, num_images)
  labels = _extract_labels(labels_filename, num_images)

  shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  with tf.Graph().as_default():
    image = tf.placeholder(dtype=tf.uint8, shape=shape)
    encoded_png = tf.image.encode_png(image)

    with tf.Session('') as sess:
      for j in range(num_images):
        sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
        sys.stdout.flush()

        png_string = sess.run(encoded_png, feed_dict={image: images[j]})

        example = dataset_utils.image_to_tfexample(
            png_string, 'png', _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
        tfrecord_writer.write(example.SerializeToString()) 
Example #27
Source File: download_and_convert_cifar10.py    From MAX-Object-Detector with Apache License 2.0 4 votes vote down vote up
def _add_to_tfrecord(filename, tfrecord_writer, offset=0):
  """Loads data from the cifar10 pickle files and writes files to a TFRecord.

  Args:
    filename: The filename of the cifar10 pickle file.
    tfrecord_writer: The TFRecord writer to use for writing.
    offset: An offset into the absolute number of images previously written.

  Returns:
    The new offset.
  """
  with tf.gfile.Open(filename, 'rb') as f:
    if sys.version_info < (3,):
      data = cPickle.load(f)
    else:
      data = cPickle.load(f, encoding='bytes')

  images = data[b'data']
  num_images = images.shape[0]

  images = images.reshape((num_images, 3, 32, 32))
  labels = data[b'labels']

  with tf.Graph().as_default():
    image_placeholder = tf.placeholder(dtype=tf.uint8)
    encoded_image = tf.image.encode_png(image_placeholder)

    with tf.Session('') as sess:

      for j in range(num_images):
        sys.stdout.write('\r>> Reading file [%s] image %d/%d' % (
            filename, offset + j + 1, offset + num_images))
        sys.stdout.flush()

        image = np.squeeze(images[j]).transpose((1, 2, 0))
        label = labels[j]

        png_string = sess.run(encoded_image,
                              feed_dict={image_placeholder: image})

        example = dataset_utils.image_to_tfexample(
            png_string, b'png', _IMAGE_SIZE, _IMAGE_SIZE, label)
        tfrecord_writer.write(example.SerializeToString())

  return offset + num_images 
Example #28
Source File: download_and_convert_cifar10.py    From object_detection_with_tensorflow with MIT License 4 votes vote down vote up
def _add_to_tfrecord(filename, tfrecord_writer, offset=0):
  """Loads data from the cifar10 pickle files and writes files to a TFRecord.

  Args:
    filename: The filename of the cifar10 pickle file.
    tfrecord_writer: The TFRecord writer to use for writing.
    offset: An offset into the absolute number of images previously written.

  Returns:
    The new offset.
  """
  with tf.gfile.Open(filename, 'rb') as f:
    if sys.version_info < (3,):
      data = cPickle.load(f)
    else:
      data = cPickle.load(f, encoding='bytes')

  images = data[b'data']
  num_images = images.shape[0]

  images = images.reshape((num_images, 3, 32, 32))
  labels = data[b'labels']

  with tf.Graph().as_default():
    image_placeholder = tf.placeholder(dtype=tf.uint8)
    encoded_image = tf.image.encode_png(image_placeholder)

    with tf.Session('') as sess:

      for j in range(num_images):
        sys.stdout.write('\r>> Reading file [%s] image %d/%d' % (
            filename, offset + j + 1, offset + num_images))
        sys.stdout.flush()

        image = np.squeeze(images[j]).transpose((1, 2, 0))
        label = labels[j]

        png_string = sess.run(encoded_image,
                              feed_dict={image_placeholder: image})

        example = dataset_utils.image_to_tfexample(
            png_string, b'png', _IMAGE_SIZE, _IMAGE_SIZE, label)
        tfrecord_writer.write(example.SerializeToString())

  return offset + num_images 
Example #29
Source File: convert.py    From tensorflow-kubernetes-art-classification with Apache License 2.0 4 votes vote down vote up
def _convert_dataset(split_name, filenames, class_names_to_ids, dataset_dir):
  """Converts the given filenames to a TFRecord dataset.

  Args:
    split_name: The name of the dataset, either 'train' or 'validation'.
    filenames: A list of absolute paths to png or jpg images.
    class_names_to_ids: A dictionary from class names (strings) to ids
      (integers).
    dataset_dir: The directory where the converted datasets are stored.
  """
  assert split_name in ['train', 'validation']

  num_per_shard = int(math.ceil(len(filenames) / float(_NUM_SHARDS)))

  with tf.Graph().as_default():
    image_reader = ImageReader()

    with tf.Session('') as sess:

      for shard_id in range(_NUM_SHARDS):
        output_filename = _get_dataset_filename(
            dataset_dir, split_name, shard_id)

        with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
          start_ndx = shard_id * num_per_shard
          end_ndx = min((shard_id+1) * num_per_shard, len(filenames))
          for i in range(start_ndx, end_ndx):
            #sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
            #    i+1, len(filenames), shard_id))
            sys.stdout.write('>> Converting image %s \n' % (filenames[i]))
            sys.stdout.flush()

            # Read the filename:
            image_data = tf.gfile.FastGFile(filenames[i], 'rb').read()
            height, width = image_reader.read_image_dims(sess, image_data)

            class_name = os.path.basename(os.path.dirname(filenames[i]))
            class_id = class_names_to_ids[class_name]

            example = dataset_utils.image_to_tfexample(
                image_data, b'jpg', height, width, class_id)
            tfrecord_writer.write(example.SerializeToString())

  sys.stdout.write('\n')
  sys.stdout.flush() 
Example #30
Source File: download_and_convert_flowers.py    From MAX-Object-Detector with Apache License 2.0 4 votes vote down vote up
def _convert_dataset(split_name, filenames, class_names_to_ids, dataset_dir):
  """Converts the given filenames to a TFRecord dataset.

  Args:
    split_name: The name of the dataset, either 'train' or 'validation'.
    filenames: A list of absolute paths to png or jpg images.
    class_names_to_ids: A dictionary from class names (strings) to ids
      (integers).
    dataset_dir: The directory where the converted datasets are stored.
  """
  assert split_name in ['train', 'validation']

  num_per_shard = int(math.ceil(len(filenames) / float(_NUM_SHARDS)))

  with tf.Graph().as_default():
    image_reader = ImageReader()

    with tf.Session('') as sess:

      for shard_id in range(_NUM_SHARDS):
        output_filename = _get_dataset_filename(
            dataset_dir, split_name, shard_id)

        with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
          start_ndx = shard_id * num_per_shard
          end_ndx = min((shard_id+1) * num_per_shard, len(filenames))
          for i in range(start_ndx, end_ndx):
            sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
                i+1, len(filenames), shard_id))
            sys.stdout.flush()

            # Read the filename:
            image_data = tf.gfile.FastGFile(filenames[i], 'rb').read()
            height, width = image_reader.read_image_dims(sess, image_data)

            class_name = os.path.basename(os.path.dirname(filenames[i]))
            class_id = class_names_to_ids[class_name]

            example = dataset_utils.image_to_tfexample(
                image_data, b'jpg', height, width, class_id)
            tfrecord_writer.write(example.SerializeToString())

  sys.stdout.write('\n')
  sys.stdout.flush()