Python rpy2.robjects.pandas2ri.activate() Examples
The following are 9
code examples of rpy2.robjects.pandas2ri.activate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
rpy2.robjects.pandas2ri
, or try the search function
.
Example #1
Source File: baseline_runner.py From SnowAlert with Apache License 2.0 | 5 votes |
def query_log_source(source, time_filter, time_column): from rpy2.robjects import pandas2ri cutoff = f"DATEADD(day, -{time_filter}, CURRENT_TIMESTAMP())" query = f"SELECT * FROM {source} WHERE {time_column} > {cutoff};" try: data = list(db.fetch(query)) except Exception as e: log.error("Failed to query log source: ", e) f = pack(data) frame = pandas.DataFrame(f) pandas2ri.activate() r_dataframe = pandas2ri.py2rpy(frame) return r_dataframe
Example #2
Source File: psm.py From perfect_match with MIT License | 5 votes |
def _build(self, **kwargs): from rpy2.robjects import numpy2ri, pandas2ri match_it = self.install_matchit() self.num_treatments = kwargs["num_treatments"] self.batch_size = kwargs["batch_size"] self.match_it = match_it numpy2ri.activate() pandas2ri.activate() return super(PSM, self)._build(**kwargs)
Example #3
Source File: bart.py From perfect_match with MIT License | 5 votes |
def _build(self, **kwargs): from rpy2.robjects import numpy2ri, pandas2ri n_jobs = int(np.rint(kwargs["n_jobs"])) bart = self.install_bart() bart.set_bart_machine_num_cores(n_jobs) self.bart = bart numpy2ri.activate() pandas2ri.activate() return None
Example #4
Source File: PipelineTimeseries.py From CGATPipelines with MIT License | 5 votes |
def dtwWrapper(data, rows, columns, k): ''' wrapper function for dynamic time warping. includes use of exponential adaptive tuning function with temporal correlation if k > 0 ''' # not explicitly called, but needs to be in R environment DTW = importr("dtw") # create a data frame of zeros of size number of ids x number of ids # fill it with the calculated distance metric for each pair wise comparison df_ = pd.DataFrame(index=rows, columns=columns) df_ = df_.fillna(0.0).astype(np.float64) # fill the array with dtw-distance values pandas2ri.activate() for i in rows: E.info("DTW %s" % i) for j in columns: series1 = data.loc[i].values.tolist() series2 = data.loc[j].values.tolist() DTW_value = (R.dtw(series1, series2)).rx('distance')[0][0] cort_value = temporalCorrelate(series1, series2) tuned_value = adaptiveTune(cort_value, k) time_dist = DTW_value * tuned_value df_.loc[i][j] = float(time_dist) df_[j][i] = float(time_dist) return df_
Example #5
Source File: test_pandas_conversions.py From rpy2 with GNU General Public License v2.0 | 5 votes |
def testActivate(self): #FIXME: is the following still making sense ? assert rpyp.py2rpy != robjects.conversion.py2rpy l = len(robjects.conversion.py2rpy.registry) k = set(robjects.conversion.py2rpy.registry.keys()) rpyp.activate() assert len(conversion.py2rpy.registry) > l rpyp.deactivate() assert len(conversion.py2rpy.registry) == l assert set(conversion.py2rpy.registry.keys()) == k
Example #6
Source File: test_pandas_conversions.py From rpy2 with GNU General Public License v2.0 | 5 votes |
def testActivateTwice(self): #FIXME: is the following still making sense ? assert rpyp.py2rpy != robjects.conversion.py2rpy l = len(robjects.conversion.py2rpy.registry) k = set(robjects.conversion.py2rpy.registry.keys()) rpyp.activate() rpyp.deactivate() rpyp.activate() assert len(conversion.py2rpy.registry) > l rpyp.deactivate() assert len(conversion.py2rpy.registry) == l assert set(conversion.py2rpy.registry.keys()) == k
Example #7
Source File: functions.py From hants with Apache License 2.0 | 4 votes |
def Kriging_Interpolation_Array(input_array, x_vector, y_vector): """ Interpolate data in an array using Ordinary Kriging Reference: https://cran.r-project.org/web/packages/automap/automap.pdf """ # Total values in array n_values = np.isfinite(input_array).sum() # Load function pandas2ri.activate() robjects.r(''' library(gstat) library(sp) library(automap) kriging_interpolation <- function(x_vec, y_vec, values_arr, n_values){ # Parameters shape <- dim(values_arr) counter <- 1 df <- data.frame(X=numeric(n_values), Y=numeric(n_values), INFZ=numeric(n_values)) # Save values into a data frame for (i in seq(shape[2])) { for (j in seq(shape[1])) { if (is.finite(values_arr[j, i])) { df[counter,] <- c(x_vec[i], y_vec[j], values_arr[j, i]) counter <- counter + 1 } } } # Grid coordinates(df) = ~X+Y int_grid <- expand.grid(x_vec, y_vec) names(int_grid) <- c("X", "Y") coordinates(int_grid) = ~X+Y gridded(int_grid) = TRUE # Kriging krig_output <- autoKrige(INFZ~1, df, int_grid) # Array values_out <- matrix(krig_output$krige_output$var1.pred, nrow=length(y_vec), ncol=length(x_vec), byrow = TRUE) return(values_out) } ''') kriging_interpolation = robjects.r['kriging_interpolation'] # Execute kriging function and get array r_array = kriging_interpolation(x_vector, y_vector, input_array, n_values) array_out = np.array(r_array) # Return return array_out
Example #8
Source File: functions.py From wa with Apache License 2.0 | 4 votes |
def array_interpolation(lon_ls, lat_ls, infz_array_in, min_infz, return_single_value): ''' Interpolate missing values in an array using kriging in R ''' # Replace values smaller than the minimum infz_array_in[infz_array_in < min_infz] = np.nan # Total values in array n_values = np.isfinite(infz_array_in).sum() # Load function pandas2ri.activate() robjects.r(''' library(gstat) library(sp) library(automap) kriging_interpolation <- function(x_vec, y_vec, values_arr, n_values){ # Parameters shape <- dim(values_arr) counter <- 1 df <- data.frame(X=numeric(n_values), Y=numeric(n_values), INFZ=numeric(n_values)) # Save values into a data frame for (i in seq(shape[2])) { for (j in seq(shape[1])) { if (is.finite(values_arr[j, i])) { df[counter,] <- c(x_vec[i], y_vec[j], values_arr[j, i]) counter <- counter + 1 } } } # Grid coordinates(df) = ~X+Y int_grid <- expand.grid(x_vec, y_vec) names(int_grid) <- c("X", "Y") coordinates(int_grid) = ~X+Y gridded(int_grid) = TRUE # Kriging krig_output <- autoKrige(INFZ~1, df, int_grid) # Array values_out <- matrix(krig_output$krige_output$var1.pred, nrow=length(y_vec), ncol=length(x_vec), byrow = TRUE) return(values_out) } ''') kriging_interpolation = robjects.r['kriging_interpolation'] # Execute kriging function and get array r_array = kriging_interpolation(lon_ls, lat_ls, infz_array_in, n_values) infz_array_out = np.array(r_array) # Return if not return_single_value: return infz_array_out else: x, y = return_single_value return infz_array_out[y, x]
Example #9
Source File: functions.py From wa with Apache License 2.0 | 4 votes |
def Kriging_Interpolation_Array(input_array, x_vector, y_vector): """ Interpolate data in an array using Ordinary Kriging Reference: https://cran.r-project.org/web/packages/automap/automap.pdf """ # Total values in array n_values = np.isfinite(input_array).sum() # Load function pandas2ri.activate() robjects.r(''' library(gstat) library(sp) library(automap) kriging_interpolation <- function(x_vec, y_vec, values_arr, n_values){ # Parameters shape <- dim(values_arr) counter <- 1 df <- data.frame(X=numeric(n_values), Y=numeric(n_values), INFZ=numeric(n_values)) # Save values into a data frame for (i in seq(shape[2])) { for (j in seq(shape[1])) { if (is.finite(values_arr[j, i])) { df[counter,] <- c(x_vec[i], y_vec[j], values_arr[j, i]) counter <- counter + 1 } } } # Grid coordinates(df) = ~X+Y int_grid <- expand.grid(x_vec, y_vec) names(int_grid) <- c("X", "Y") coordinates(int_grid) = ~X+Y gridded(int_grid) = TRUE # Kriging krig_output <- autoKrige(INFZ~1, df, int_grid) # Array values_out <- matrix(krig_output$krige_output$var1.pred, nrow=length(y_vec), ncol=length(x_vec), byrow = TRUE) return(values_out) } ''') kriging_interpolation = robjects.r['kriging_interpolation'] # Execute kriging function and get array r_array = kriging_interpolation(x_vector, y_vector, input_array, n_values) array_out = np.array(r_array) # Return return array_out