Python matplotlib.cm.Greys_r() Examples

The following are 15 code examples of matplotlib.cm.Greys_r(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module matplotlib.cm , or try the search function .
Example #1
Source File: loading_utils.py    From Dropout_BBalpha with MIT License 6 votes vote down vote up
def plot_images(ax, images, shape, color = False):
     # finally save to file
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    # flip 0 to 1
    images = 1.0 - images

    images = reshape_and_tile_images(images, shape, n_cols=len(images))
    if color:
        from matplotlib import cm
        plt.imshow(images, cmap=cm.Greys_r, interpolation='nearest')
    else:
        plt.imshow(images, cmap='Greys')
    ax.axis('off') 
Example #2
Source File: med2image.py    From med2image with MIT License 6 votes vote down vote up
def slice_save(self, astr_outputFile):
        '''
        Saves a single slice.

        ARGS

        o astr_output
        The output filename to save the slice to.
        '''
        self.dp.qprint('Outputfile = %s' % astr_outputFile)
        fformat = astr_outputFile.split('.')[-1]
        if fformat == 'dcm':
            if self._dcm:
                self._dcm.pixel_array.flat = self._Mnp_2Dslice.flat
                self._dcm.PixelData = self._dcm.pixel_array.tostring()
                self._dcm.save_as(astr_outputFile)
            else:
                raise ValueError('dcm output format only available for DICOM files')
        else:
            pylab.imsave(astr_outputFile, self._Mnp_2Dslice, format=fformat, cmap = cm.Greys_r) 
Example #3
Source File: visualisation.py    From variational-continual-learning with Apache License 2.0 6 votes vote down vote up
def plot_images(images, shape, path, filename, n_rows = 10, color = True):
     # finally save to file
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    images = reshape_and_tile_images(images, shape, n_rows)
    if color:
        from matplotlib import cm
        plt.imsave(fname=path+filename+".png", arr=images, cmap=cm.Greys_r)
    else:
        plt.imsave(fname=path+filename+".png", arr=images, cmap='Greys')
    #plt.axis('off')
    #plt.tight_layout()
    #plt.savefig(path + filename + ".png", format="png")
    print "saving image to " + path + filename + ".png"
    plt.close() 
Example #4
Source File: util.py    From aitom with GNU General Public License v3.0 6 votes vote down vote up
def dsp_img(v, new_figure=True):

    import matplotlib.pyplot as plt

    if new_figure:
        fig = plt.figure()
        ax = fig.add_subplot(111)
    else:
        ax = plt


    import matplotlib.cm as cm
    
    ax_u = ax.imshow(  v, cmap = cm.Greys_r )
    ax.axis('off') # clear x- and y-axes

    plt.pause(0.001)        # calling pause will display the figure without blocking the program, see segmentation.active_contour.morphsnakes.evolve_visual 
Example #5
Source File: chapter_04_001.py    From Python-Deep-Learning-SE with MIT License 5 votes vote down vote up
def conv(image, im_filter):
    """
    :param image: grayscale image as a 2-dimensional numpy array
    :param im_filter: 2-dimensional numpy array
    """

    # input dimensions
    height = image.shape[0]
    width = image.shape[1]

    # output image with reduced dimensions
    im_c = np.zeros((height - len(im_filter) + 1,
                     width - len(im_filter) + 1))

    # iterate over all rows and columns
    for row in range(len(im_c)):
        for col in range(len(im_c[0])):
            # apply the filter
            for i in range(len(im_filter)):
                for j in range(len(im_filter[0])):
                    im_c[row, col] += image[row + i, col + j] * im_filter[i][j]

    # fix out-of-bounds values
    im_c[im_c > 255] = 255
    im_c[im_c < 0] = 0

    # plot images for comparison
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm

    plt.figure()
    plt.imshow(image, cmap=cm.Greys_r)
    plt.show()

    plt.imshow(im_c, cmap=cm.Greys_r)
    plt.show() 
Example #6
Source File: caption.py    From a-PyTorch-Tutorial-to-Image-Captioning with MIT License 5 votes vote down vote up
def visualize_att(image_path, seq, alphas, rev_word_map, smooth=True):
    """
    Visualizes caption with weights at every word.

    Adapted from paper authors' repo: https://github.com/kelvinxu/arctic-captions/blob/master/alpha_visualization.ipynb

    :param image_path: path to image that has been captioned
    :param seq: caption
    :param alphas: weights
    :param rev_word_map: reverse word mapping, i.e. ix2word
    :param smooth: smooth weights?
    """
    image = Image.open(image_path)
    image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)

    words = [rev_word_map[ind] for ind in seq]

    for t in range(len(words)):
        if t > 50:
            break
        plt.subplot(np.ceil(len(words) / 5.), 5, t + 1)

        plt.text(0, 1, '%s' % (words[t]), color='black', backgroundcolor='white', fontsize=12)
        plt.imshow(image)
        current_alpha = alphas[t, :]
        if smooth:
            alpha = skimage.transform.pyramid_expand(current_alpha.numpy(), upscale=24, sigma=8)
        else:
            alpha = skimage.transform.resize(current_alpha.numpy(), [14 * 24, 14 * 24])
        if t == 0:
            plt.imshow(alpha, alpha=0)
        else:
            plt.imshow(alpha, alpha=0.8)
        plt.set_cmap(cm.Greys_r)
        plt.axis('off')
    plt.show() 
Example #7
Source File: viz.py    From Diffusion-Probabilistic-Models with MIT License 5 votes vote down vote up
def plot_parameter(theta_in, base_fname_part1, base_fname_part2="", title = '', n_colors=None):
    """
    Save both a raw and receptive field style plot of the contents of theta_in.
    base_fname_part1 provides the mandatory root of the filename.
    """

    theta = np.array(theta_in.copy()) # in case it was a scalar
    print "%s min %g median %g mean %g max %g shape"%(
        title, np.min(theta), np.median(theta), np.mean(theta), np.max(theta)), theta.shape
    theta = np.squeeze(theta)
    if len(theta.shape) == 0:
        # it's a scalar -- make it a 1d array
        theta = np.array([theta])
    shp = theta.shape
    if len(shp) > 2:
        theta = theta.reshape((theta.shape[0], -1))
        shp = theta.shape

    ## display basic figure
    plt.figure(figsize=[8,8])
    if len(shp) == 1:
        plt.plot(theta, '.', alpha=0.5)
    elif len(shp) == 2:
        plt.imshow(theta, interpolation='nearest', aspect='auto', cmap=cm.Greys_r)
        plt.colorbar()

    plt.title(title)
    plt.savefig(base_fname_part1 + '_raw_' + base_fname_part2 + '.pdf')
    plt.close()

    ## also display it in basis function view if it's a matrix, or
    ## if it's a bias with a square number of entries
    if len(shp) >= 2 or is_square(shp[0]):
        if len(shp) == 1:
            theta = theta.reshape((-1,1))
        plt.figure(figsize=[8,8])
        if show_receptive_fields(theta, n_colors=n_colors):
            plt.suptitle(title + "receptive fields")
            plt.savefig(base_fname_part1 + '_rf_' + base_fname_part2 + '.pdf')
        plt.close() 
Example #8
Source File: io.py    From aitom with GNU General Public License v3.0 5 votes vote down vote up
def save_image_matplotlib(m, out_file, vmin=None, vmax=None):
    import matplotlib.pyplot as PLT
    import matplotlib.cm as CM

    if vmin is None:        vmin = m.min()
    if vmax is None:        vmax = m.max()

    ax_u = PLT.imshow(  m, cmap = CM.Greys_r, vmin=vmin, vmax=vmax)
    PLT.axis('off')
    PLT.draw()

    PLT.savefig(out_file, bbox_inches='tight')
    PLT.close("all") 
Example #9
Source File: chapter_04_001.py    From Python-Deep-Learning-Second-Edition with MIT License 5 votes vote down vote up
def conv(image, im_filter):
    """
    :param image: grayscale image as a 2-dimensional numpy array
    :param im_filter: 2-dimensional numpy array
    """

    # input dimensions
    height = image.shape[0]
    width = image.shape[1]

    # output image with reduced dimensions
    im_c = np.zeros((height - len(im_filter) + 1,
                     width - len(im_filter) + 1))

    # iterate over all rows and columns
    for row in range(len(im_c)):
        for col in range(len(im_c[0])):
            # apply the filter
            for i in range(len(im_filter)):
                for j in range(len(im_filter[0])):
                    im_c[row, col] += image[row + i, col + j] * im_filter[i][j]

    # fix out-of-bounds values
    im_c[im_c > 255] = 255
    im_c[im_c < 0] = 0

    # plot images for comparison
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm

    plt.figure()
    plt.imshow(image, cmap=cm.Greys_r)
    plt.show()

    plt.imshow(im_c, cmap=cm.Greys_r)
    plt.show() 
Example #10
Source File: ouroboros_api.py    From aggregation with Apache License 2.0 5 votes vote down vote up
def __display_image__(self,subject_id,args_l,kwargs_l,block=True,title=None):
        """
        return the file names for all the images associated with a given subject_id
        also download them if necessary
        :param subject_id:
        :return:
        """
        subject = self.subject_collection.find_one({"zooniverse_id": subject_id})
        url = subject["location"]["standard"]

        slash_index = url.rfind("/")
        object_id = url[slash_index+1:]

        if not(os.path.isfile(self.base_directory+"/Databases/"+self.project+"/images/"+object_id)):
            urllib.urlretrieve(url, self.base_directory+"/Databases/"+self.project+"/images/"+object_id)

        fname = self.base_directory+"/Databases/"+self.project+"/images/"+object_id

        image_file = cbook.get_sample_data(fname)
        image = plt.imread(image_file)

        fig, ax = plt.subplots()
        im = ax.imshow(image,cmap = cm.Greys_r)

        for args,kwargs in zip(args_l,kwargs_l):
            print args,kwargs
            ax.plot(*args,**kwargs)

        if title is not None:
            ax.set_title(title)
        plt.show(block=block) 
Example #11
Source File: rrt.py    From grammar-activity-prediction with MIT License 5 votes vote down vote up
def plan_trajectory_with_ui(img):
    fig = ppl.gcf()
    fig.clf()
    ax = fig.add_subplot(1, 1, 1)
    ax.imshow(img, cmap=cm.Greys_r)
    ax.axis('image')
    ppl.draw()
    print 'Map is', len(img[0]), 'x', len(img)
    start, goal = select_start_goal_points(ax, img)
    path = rrt(img, start, goal, ax)
    return path 
Example #12
Source File: MorseDecoder.py    From LSTM_morse with MIT License 5 votes vote down vote up
def infer(model, fnImg):
    "recognize text in image provided by file path"
    img = create_image2(fnImg, model.imgSize)
    plt.imshow(img,cmap = cm.Greys_r)
    batch = Batch(None, [img])
    (recognized, probability) = model.inferBatch(batch, True)
    print('Recognized:', '"' + recognized[0] + '"')
    print('Probability:', probability[0])
    print(recognized)


#from pyAudioAnalysis.audioSegmentation import silence_removal 
Example #13
Source File: demo.py    From Image-Captioning-PyTorch with Apache License 2.0 5 votes vote down vote up
def visualize_att(image_path, seq, alphas, rev_word_map, i, smooth=True):
    """
    Visualizes caption with weights at every word.
    Adapted from paper authors' repo: https://github.com/kelvinxu/arctic-captions/blob/master/alpha_visualization.ipynb
    :param image_path: path to image that has been captioned
    :param seq: caption
    :param alphas: weights
    :param rev_word_map: reverse word mapping, i.e. ix2word
    :param smooth: smooth weights?
    """
    image = Image.open(image_path)
    image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)

    words = [rev_word_map[ind] for ind in seq]
    print(words)

    for t in range(len(words)):
        if t > 50:
            break
        plt.subplot(np.ceil(len(words) / 5.), 5, t + 1)

        plt.text(0, 1, '%s' % (words[t]), color='black', backgroundcolor='white', fontsize=12)
        plt.imshow(image)
        current_alpha = alphas[t, :]
        if smooth:
            alpha = skimage.transform.pyramid_expand(current_alpha.numpy(), upscale=24, sigma=8)
        else:
            alpha = skimage.transform.resize(current_alpha.numpy(), [14 * 24, 14 * 24])
        if t == 0:
            plt.imshow(alpha, alpha=0)
        else:
            plt.imshow(alpha, alpha=0.8)
        plt.set_cmap(cm.Greys_r)
        plt.axis('off')

    plt.savefig('images/out_{}.jpg'.format(i))
    plt.close() 
Example #14
Source File: utils_visualise.py    From DeepVis-PredDiff with MIT License 4 votes vote down vote up
def plot_results(x_test, x_test_im, sensMap, predDiff, tarFunc, classnames, testIdx, save_path):
    '''
    Plot the results of the relevance estimation
    '''
    imsize = x_test.shape  
    
    tarIdx = np.argmax(tarFunc(x_test)[-1])
    tarClass = classnames[tarIdx]
    #tarIdx = 287
    
    plt.figure()
    plt.subplot(2,2,1)
    plt.imshow(x_test_im, interpolation='nearest')
    plt.title('original')
    frame = pylab.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([]) 
    plt.subplot(2,2,2)
    plt.imshow(sensMap, cmap=cm.Greys_r, interpolation='nearest')
    plt.title('sensitivity map')
    frame = pylab.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([]) 
    plt.subplot(2,2,3)
    p = predDiff.reshape((imsize[1],imsize[2],-1))[:,:,tarIdx]
    plt.imshow(p, cmap=cm.seismic, vmin=-np.max(np.abs(p)), vmax=np.max(np.abs(p)), interpolation='nearest')
    plt.colorbar()
    #plt.imshow(np.abs(p), cmap=cm.Greys_r)
    plt.title('weight of evidence')
    frame = pylab.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([]) 
    plt.subplot(2,2,4)
    plt.title('class: {}'.format(tarClass))
    p = get_overlayed_image(x_test_im, p)
    #p = predDiff[0,:,:,np.argmax(netPred(net, x_test)[0]),1].reshape((224,224))
    plt.imshow(p, cmap=cm.seismic, vmin=-np.max(np.abs(p)), vmax=np.max(np.abs(p)), interpolation='nearest')
    #plt.title('class entropy')
    frame = pylab.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([]) 
    
    fig = plt.gcf()
    fig.set_size_inches(np.array([12,12]), forward=True)
    plt.tight_layout()
    plt.tight_layout()
    plt.tight_layout()
    plt.savefig(save_path)
    plt.close() 
Example #15
Source File: poe_fig.py    From MJHMC with GNU General Public License v2.0 4 votes vote down vote up
def plot_imgs(imgs, samp_names, step_nums, vmin = -2, vmax = 2):
    plt.figure(figsize=(5.5,3.6))

    nsamplers = len(samp_names)
    nsteps = len(step_nums)

    plt.subplot(nsamplers+1, nsteps+1, 1)
    plt.axis('off')
    plt.text(0.9, -0.1, "# grads",
        horizontalalignment='right',
        verticalalignment='bottom')

    for step_i in range(nsteps):
        plt.subplot(nsamplers+1, nsteps+1, 2 + step_i)
        plt.axis('off')
        plt.text(0.5, -0.1, "%d"%step_nums[step_i],
            horizontalalignment='center',
            verticalalignment='bottom')
    for samp_i in range(nsamplers):
        plt.subplot(nsamplers+1, nsteps+1, 1 + (samp_i+1)*(nsteps+1))
        plt.axis('off')
        plt.text(0.9, 0.5, samp_names[samp_i],
            horizontalalignment='right',
            verticalalignment='center')


    for samp_i in range(nsamplers):
        for step_i in range(nsteps):
            plt.subplot(nsamplers+1, nsteps+1, 2 + step_i + (samp_i+1)*(nsteps+1))

            ptch = imgs[samp_i][step_i].copy()
            img_w = np.sqrt(np.prod(ptch.shape))
            ptch = ptch.reshape((img_w, img_w))

            ptch -= vmin
            ptch /= vmax-vmin
            plt.imshow(ptch, interpolation='nearest', cmap=cm.Greys_r )
            plt.axis('off')

    # plt.tight_layout()
    plt.savefig('poe_samples.pdf')
    plt.close()