Python matplotlib.cm.rainbow() Examples
The following are 17
code examples of matplotlib.cm.rainbow().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.cm
, or try the search function
.
Example #1
Source File: shape_plot.py From airfoil-opt-gan with MIT License | 6 votes |
def plot_shape(xys, z1, z2, ax, scale, scatter, symm_axis, **kwargs): # mx = max([y for (x, y) in m]) # mn = min([y for (x, y) in m]) xscl = scale# / (mx - mn) yscl = scale# / (mx - mn) # ax.scatter(z1, z2) if scatter: if 'c' not in kwargs: kwargs['c'] = cm.rainbow(np.linspace(0,1,xys.shape[0])) # ax.plot( *zip(*[(x * xscl + z1, y * yscl + z2) for (x, y) in xys]), lw=.2, c='b') ax.scatter( *zip(*[(x * xscl + z1, y * yscl + z2) for (x, y) in xys]), edgecolors='none', **kwargs) else: ax.plot( *zip(*[(x * xscl + z1, y * yscl + z2) for (x, y) in xys]), **kwargs) if symm_axis == 'y': # ax.plot( *zip(*[(-x * xscl + z1, y * yscl + z2) for (x, y) in xys]), lw=.2, c='b') plt.fill_betweenx( *zip(*[(y * yscl + z2, -x * xscl + z1, x * xscl + z1) for (x, y) in xys]), color='gray', alpha=.2) elif symm_axis == 'x': # ax.plot( *zip(*[(x * xscl + z1, -y * yscl + z2) for (x, y) in xys]), lw=.2, c='b') plt.fill_between( *zip(*[(x * xscl + z1, -y * yscl + z2, y * yscl + z2) for (x, y) in xys]), color='gray', alpha=.2)
Example #2
Source File: zernike.py From opticspy with MIT License | 6 votes |
def ptf(self): """ Phase transfer function """ PSF = self.__psfcaculator__() PTF = __fftshift__(__fft2__(PSF)) PTF = __np__.angle(PTF) b = 400 R = (200)**2 for i in range(b): for j in range(b): if (i-b/2)**2+(j-b/2)**2>R: PTF[i][j] = 0 __plt__.imshow(abs(PTF),cmap=__cm__.rainbow) __plt__.colorbar() __plt__.show() return 0
Example #3
Source File: transferLearning_inceptionModel.py From MachineLearning_TensorFlow with MIT License | 5 votes |
def plot_scatter(values, cls): from matplotlib import cm as cm cmap = cm.rainbow(np.linspace(0.0, 1.0, num_classes)) colors = cmap[cls] x = values[:, 0] y = values[:, 1] plt.scatter(x, y, color=colors) plt.show()
Example #4
Source File: tf_kmeans.py From tf-example-models with Apache License 2.0 | 5 votes |
def plot_clustered_data(points, c_means, c_assignments): """Plots the cluster-colored data and the cluster means""" colors = cm.rainbow(np.linspace(0, 1, CLUSTERS)) for cluster, color in zip(range(CLUSTERS), colors): c_points = points[c_assignments == cluster] plt.plot(c_points[:, 0], c_points[:, 1], ".", color=color, zorder=0) plt.plot(c_means[cluster, 0], c_means[cluster, 1], ".", color="black", zorder=1) plt.show() # PREPARING DATA # generating DATA_POINTS points from a GMM with CLUSTERS components
Example #5
Source File: cifar_10_revisted_transfer_learning.py From Deep-Learning-By-Example with MIT License | 5 votes |
def plot_reduced_transferValues(transferValues, cls_integers): # Create a color-map with a different color for each class. c_map = color_map.rainbow(np.linspace(0.0, 1.0, num_classes)) # Getting the color for each sample. colors = c_map[cls_integers] # Getting the x and y values. x_val = transferValues[:, 0] y_val = transferValues[:, 1] # Plot the transfer values in a scatter plot plt.scatter(x_val, y_val, color=colors) plt.show()
Example #6
Source File: ica.py From autograd with MIT License | 5 votes |
def color_scatter(ax, xs, ys): colors = cm.rainbow(np.linspace(0, 1, len(ys))) for x, y, c in zip(xs, ys, colors): ax.scatter(x, y, color=c)
Example #7
Source File: color_utilities.py From CvStudio with MIT License | 5 votes |
def rainbow_gradient(cls, n): cmap = cm.rainbow(np.linspace(0.0, 1.0, n)) R = list(map(lambda x: math.floor(x * 255), cmap[:, 0])) G = list(map(lambda x: math.floor(x * 255), cmap[:, 1])) B = list(map(lambda x: math.floor(x * 255), cmap[:, 2])) return cls.__color_dict(list(zip(B, G, R)))
Example #8
Source File: tsne_visual.py From SceneChangeDet with MIT License | 5 votes |
def plot_with_labels_feat_cat_without_text(lowDWeights, labels,save_dir): plt.cla() X,Y = lowDWeights[:,0],lowDWeights[:,1] for idx,(x,y,lab) in enumerate(zip(X,Y,labels)): #c = cm.rainbow(int(255 * lab/2)) if lab == 0: plt.plot(x,y,'b') if lab == 1: plt.plot(x,y,'r') #plt.text(x,y,lab,backgroundcolor=c,fontsize=9) plt.xlim(X.min() *2 , X.max() *2);plt.ylim(Y.min()*2, Y.max()*2) plt.title('Visualize last layer') #plt.show();plt.pause(0.01) plt.savefig(save_dir) print save_dir
Example #9
Source File: tsne_visual.py From SceneChangeDet with MIT License | 5 votes |
def plot_with_labels_feat_cat(lowDWeights, labels,save_dir,title): plt.cla() X,Y = lowDWeights[:,0],lowDWeights[:,1] #plt.scatter(X,Y) for idx,(x,y,lab) in enumerate(zip(X,Y,labels)): color = cm.rainbow(int(255 * lab/2)) #plt.scatter(x,y,color) plt.text(x,y,lab,backgroundcolor=color,fontsize=0) plt.xlim(X.min() *2 , X.max() *2);plt.ylim(Y.min()*2, Y.max()*2) plt.title(title) #plt.show();plt.pause(0.01) plt.savefig(save_dir) print save_dir #for x, y, s in zip(X, Y, labels): #c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
Example #10
Source File: tsne_visual.py From SceneChangeDet with MIT License | 5 votes |
def plot_with_labels(lowDWeights, labels,sz): plt.cla() X_t0,Y_t0 = lowDWeights[0][:,0],lowDWeights[0][:,1] X_t1,Y_t1 = lowDWeights[1][:,0],lowDWeights[1][:,1] for idx,(x_t0,y_t0,x_t1,y_t1,lab) in enumerate(zip(X_t0,Y_t0,X_t1,Y_t1,labels)): c = cm.rainbow(int(255 * idx/sz)) plt.text(x_t0,y_t0,lab,backgroundcolor=c,fontsize=9) plt.text(x_t1,y_t1,lab,backgroundcolor=c,fontsize=9) plt.xlim(X_t0.min(), X_t0.max());plt.ylim(Y_t0.min(), Y_t1.max()); plt.title('Visualize last layer');plt.show();plt.pause(0.01) #for x, y, s in zip(X, Y, labels): #c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
Example #11
Source File: zernike_rec.py From opticspy with MIT License | 5 votes |
def ptf(self): """ Phase transfer function """ PSF = self.__psfcaculator__() PTF = __fftshift__(__fft2__(PSF)) PTF = __np__.angle(PTF) l1 = 100 d = 400 A = __np__.zeros([d,d]) A[d//2-l1//2+1:d//2+l1//2+1,d//2-l1//2+1:d//2+l1//2+1] = PTF[d//2-l1//2+1:d//2+l1//2+1,d//2-l1//2+1:d//2+l1//2+1] __plt__.imshow(abs(A),cmap=__cm__.rainbow) __plt__.colorbar() __plt__.show() return 0
Example #12
Source File: play.py From simulator with GNU General Public License v3.0 | 5 votes |
def draw_buffer(self): self.buffer_figure, self.buffer_ax = plt.subplots() self.lineIN, = self.buffer_ax.plot([1] * 2, [1] * 2, color='#000000', ls="None", label="IN", marker='o', animated=True) self.lineOUT, = self.buffer_ax.plot([1] * 2, [1] * 2, color='#CCCCCC', ls="None", label="OUT", marker='o', animated=True) self.buffer_figure.suptitle("Buffer Status", size=16) plt.legend(loc=2, numpoints=1) total_peers = self.number_of_monitors + self.number_of_peers + self.number_of_malicious self.buffer_colors = cm.rainbow(np.linspace(0, 1, total_peers)) plt.axis([0, total_peers + 1, 0, self.get_buffer_size()]) plt.xticks(range(0, total_peers + 1, 1)) self.buffer_order = {} self.buffer_index = 1 self.buffer_labels = self.buffer_ax.get_xticks().tolist() plt.grid() self.buffer_figure.canvas.draw()
Example #13
Source File: play.py From simulator with GNU General Public License v3.0 | 5 votes |
def draw_buffer(self): self.buff_win = pg.GraphicsLayoutWidget() self.buff_win.setWindowTitle('Buffer Status') self.buff_win.resize(800, 700) self.total_peers = self.number_of_monitors + self.number_of_peers + self.number_of_malicious self.p4 = self.buff_win.addPlot() self.p4.showGrid(x=True, y=True, alpha=100) # To show grid lines across x axis and y axis leftaxis = self.p4.getAxis('left') # get left axis i.e y axis leftaxis.setTickSpacing(5, 1) # to set ticks at a interval of 5 and grid lines at 1 space # Get different colors using matplotlib library if self.total_peers < 8: colors = cm.Set2(np.linspace(0, 1, 8)) elif self.total_peers < 12: colors = cm.Set3(np.linspace(0, 1, 12)) else: colors = cm.rainbow(np.linspace(0, 1, self.total_peers+1)) self.QColors = [pg.hsvColor(color[0], color[1], color[2], color[3]) for color in colors] # Create QtColors, each color would represent a peer self.Data = [] # To represent buffer out i.e outgoing data from buffer self.OutData = [] # To represent buffer in i.e incoming data in buffer # a single line would reperesent a single color or peer, hence we would not need to pass a list of brushes self.lineIN = [None]*self.total_peers for ix in range(self.total_peers): self.lineIN[ix] = self.p4.plot(pen=(None), symbolBrush=self.QColors[ix], name='IN', symbol='o', clear=False) self.Data.append(set()) self.OutData.append(set()) # similiarly one line per peer to represent outgoinf data from buffer self.lineOUT = self.p4.plot(pen=(None), symbolBrush=mkColor('#CCCCCC'), name='OUT', symbol='o', clear=False) self.p4.setRange(xRange=[0, self.total_peers], yRange=[0, self.get_buffer_size()]) self.buff_win.show() # To actually show create window self.buffer_order = {} self.buffer_index = 0 self.buffer_labels = [] self.lastUpdate = pg.ptime.time() self.avgFps = 0.0
Example #14
Source File: cluster.py From 2D-Motion-Retargeting with MIT License | 5 votes |
def cluster_motion(net, cluster_data, device, save_path, nr_anims=15, mode='both'): data, animations = cluster_data[0], cluster_data[1] idx = np.linspace(0, data.shape[0] - 1, nr_anims, dtype=int).tolist() data = data[idx] animations = animations[idx] if mode == 'body': data = data[:, :, 0, :, :].reshape(nr_anims, -1, data.shape[3], data.shape[4]) elif mode == 'view': data = data[:, 3, :, :, :].reshape(nr_anims, -1, data.shape[3], data.shape[4]) else: data = data[:, :4, ::2, :, :].reshape(nr_anims, -1, data.shape[3], data.shape[4]) nr_anims, nr_cv = data.shape[:2] labels = np.arange(0, nr_anims).reshape(-1, 1) labels = np.tile(labels, (1, nr_cv)).reshape(-1) features = net.mot_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3]).to(device)) features = features.detach().cpu().numpy().reshape(features.shape[0], -1) features_2d = tsne_on_pca(features) features_2d = features_2d.reshape(nr_anims, nr_cv, -1) if features_2d.shape[1] < 5: features_2d = np.tile(features_2d, (1, 2, 1)) plt.figure(figsize=(8, 4)) colors = cm.rainbow(np.linspace(0, 1, nr_anims)) for i in range(nr_anims): x = features_2d[i, :, 0] y = features_2d[i, :, 1] plt.scatter(x, y, c=colors[i], label=animations[i]) plt.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0) plt.tight_layout(rect=[0,0,0.8,1]) plt.savefig(save_path)
Example #15
Source File: cluster.py From 2D-Motion-Retargeting with MIT License | 5 votes |
def cluster_view(net, cluster_data, device, save_path): data, views = cluster_data[0], cluster_data[3] idx = np.random.randint(data.shape[1] - 1) # np.linspace(0, data.shape[1] - 1, 4, dtype=int).tolist() data = data[:, idx, :, :, :] nr_mc, nr_view = data.shape[0], data.shape[1] labels = np.arange(0, nr_view).reshape(1, -1) labels = np.tile(labels, (nr_mc, 1)).reshape(-1) if hasattr(net, 'static_encoder'): features = net.static_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3])[:, :-2, :].to(device)) else: features = net.view_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3])[:, :-2, :].to(device)) features = features.detach().cpu().numpy().reshape(features.shape[0], -1) features_2d = tsne_on_pca(features, is_PCA=False) features_2d = features_2d.reshape(nr_mc, nr_view, -1) plt.figure(figsize=(7, 4)) colors = cm.rainbow(np.linspace(0, 1, nr_view)) for i in range(nr_view): x = features_2d[:, i, 0] y = features_2d[:, i, 1] plt.scatter(x, y, c=colors[i], label=views[i]) plt.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0) plt.tight_layout(rect=[0, 0, 0.75, 1]) plt.savefig(save_path)
Example #16
Source File: cluster.py From 2D-Motion-Retargeting with MIT License | 5 votes |
def cluster_body(net, cluster_data, device, save_path): data, characters = cluster_data[0], cluster_data[2] data = data[:, :, 0, :, :] # data = data.reshape(-1, data.shape[2], data.shape[3], data.shape[4]) nr_mv, nr_char = data.shape[0], data.shape[1] labels = np.arange(0, nr_char).reshape(1, -1) labels = np.tile(labels, (nr_mv, 1)).reshape(-1) if hasattr(net, 'static_encoder'): features = net.static_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3])[:, :-2, :].to(device)) else: features = net.body_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3])[:, :-2, :].to(device)) features = features.detach().cpu().numpy().reshape(features.shape[0], -1) features_2d = tsne_on_pca(features, is_PCA=False) features_2d = features_2d.reshape(nr_mv, nr_char, -1) plt.figure(figsize=(7, 4)) colors = cm.rainbow(np.linspace(0, 1, nr_char)) for i in range(nr_char): x = features_2d[:, i, 0] y = features_2d[:, i, 1] plt.scatter(x, y, c=colors[i], label=characters[i]) plt.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0) plt.tight_layout(rect=[0,0,0.75,1]) plt.savefig(save_path)
Example #17
Source File: analyser.py From spotpy with MIT License | 4 votes |
def plot_heatmap_griewank(results,algorithms, fig_name='heatmap_griewank.png'): """Example Plot as seen in the SPOTPY Documentation""" import matplotlib.pyplot as plt from matplotlib import ticker from matplotlib import cm font = {'family' : 'calibri', 'weight' : 'normal', 'size' : 20} plt.rc('font', **font) subplots=len(results) xticks=[-40,0,40] yticks=[-40,0,40] fig=plt.figure(figsize=(16,6)) N = 2000 x = np.linspace(-50.0, 50.0, N) y = np.linspace(-50.0, 50.0, N) x, y = np.meshgrid(x, y) z=1+ (x**2+y**2)/4000 - np.cos(x/np.sqrt(2))*np.cos(y/np.sqrt(3)) cmap = plt.get_cmap('autumn') rows=2.0 for i in range(subplots): amount_row = int(np.ceil(subplots/rows)) ax = plt.subplot(rows, amount_row, i+1) CS = ax.contourf(x, y, z,locator=ticker.LogLocator(),cmap=cm.rainbow) ax.plot(results[i]['par0'],results[i]['par1'],'ko',alpha=0.2,markersize=1.9) ax.xaxis.set_ticks([]) if i==0: ax.set_ylabel('y') if i==subplots/rows: ax.set_ylabel('y') if i>=subplots/rows: ax.set_xlabel('x') ax.xaxis.set_ticks(xticks) if i!=0 and i!=subplots/rows: ax.yaxis.set_ticks([]) ax.set_title(algorithms[i]) fig.savefig(fig_name, bbox_inches='tight')