Python matplotlib.cm.coolwarm() Examples
The following are 30
code examples of matplotlib.cm.coolwarm().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.cm
, or try the search function
.
Example #1
Source File: benchmark.py From NiaPy with MIT License | 6 votes |
def plot3d(self, scale=0.32): r"""Plot 3d scatter plot of benchmark function. Args: scale (float): Scale factor for points. """ fig = plt.figure() ax = Axes3D(fig) func = self.function() Xr, Yr = arange(self.Lower, self.Upper, scale), arange(self.Lower, self.Upper, scale) X, Y = meshgrid(Xr, Yr) Z = vectorize(self.__2dfun)(X, Y, func) ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3) ax.contourf(X, Y, Z, zdir='z', offset=-10, cmap=cm.coolwarm) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show() # vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
Example #2
Source File: franke.py From pyGPGO with MIT License | 6 votes |
def plotFranke(): """ Plots Franke's function """ x = np.linspace(0, 1, num=1000) y = np.linspace(0, 1, num=1000) X, Y = np.meshgrid(x, y) Z = f(X, Y) fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0) fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()
Example #3
Source File: gif_gen.py From pyGPGO with MIT License | 6 votes |
def plotPred(gpgo, num=100): X = np.linspace(0, 1, num=num) Y = np.linspace(0, 1, num=num) U = np.zeros((num**2, 2)) i = 0 for x in X: for y in Y: U[i, :] = [x, y] i += 1 z = gpgo.GP.predict(U)[0] Z = z.reshape((num, num)) X, Y = np.meshgrid(X, Y) ax = fig.add_subplot(1, 2, 2, projection='3d') ax.set_title('Gaussian Process surrogate') surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0) fig.colorbar(surf, shrink=0.5, aspect=5) best = gpgo.best ax.scatter([best[0]], [best[1]], s=40, marker='x', c='r', label='Sampled point') plt.legend(loc='lower right') #plt.show() return Z
Example #4
Source File: LST.py From python-urbanPlanning with MIT License | 6 votes |
def ThrShow(self,data): font1 = {'family' : 'STXihei', 'weight' : 'normal', 'size' : 50, } fig, ax = plt.subplots(subplot_kw=dict(projection='3d'),figsize=(50,20)) ls = LightSource(data.shape[0], data.shape[1]) rgb = ls.shade(data, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft') x=np.array([list(range(data.shape[0]))]*data.shape[1]) print(x.shape,x.T.shape,data.shape) surf = ax.plot_surface(x, x.T, data, rstride=1, cstride=1, facecolors=rgb,linewidth=0, antialiased=False, shade=False,alpha=0.3) fig.colorbar(surf,shrink=0.5,aspect=5) cset = ax.contour(x, x.T, data, zdir='z', offset=37, cmap=cm.coolwarm) cset = ax.contour(x, x.T, data, zdir='x', offset=-30, cmap=cm.coolwarm) cset = ax.contour(x, x.T, data, zdir='y', offset=-30, cmap=cm.coolwarm) plt.show()
Example #5
Source File: lagrange.py From pyray with MIT License | 6 votes |
def three_d_grid(): fig = plt.figure() ax = fig.gca(projection='3d') # Make data. X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = (X**3 + Y**3) Z = R # Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False) # Customize the z axis. #ax.set_zlim(-1.01, 1.01) #ax.zaxis.set_major_locator(LinearLocator(10)) #ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()
Example #6
Source File: deforme.py From Image-Restoration with MIT License | 6 votes |
def plot_surface(x,y,z): fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm, linewidth=0, antialiased=False) # Customize the z axis. ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) if save_info: fig.tight_layout() fig.savefig('./gaussian'+ str(idx) + '.png') plt.show()
Example #7
Source File: plotting.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def createHoffmueller(data, coordSeries, timeSeries, coordName, title, interpolate='nearest'): cmap = cm.coolwarm # ls = LightSource(315, 45) # rgb = ls.shade(data, cmap) fig, ax = plt.subplots() fig.set_size_inches(11.0, 8.5) cax = ax.imshow(data, interpolation=interpolate, cmap=cmap) def yFormatter(y, pos): if y < len(coordSeries): return "%s $^\circ$" % (int(coordSeries[int(y)] * 100.0) / 100.) else: return "" def xFormatter(x, pos): if x < len(timeSeries): return timeSeries[int(x)].strftime('%b %Y') else: return "" ax.xaxis.set_major_formatter(FuncFormatter(xFormatter)) ax.yaxis.set_major_formatter(FuncFormatter(yFormatter)) ax.set_title(title) ax.set_ylabel(coordName) ax.set_xlabel('Date') fig.colorbar(cax) fig.autofmt_xdate() labels = ['point {0}'.format(i + 1) for i in range(len(data))] # plugins.connect(fig, plugins.MousePosition(fontsize=14)) tooltip = mpld3.plugins.PointLabelTooltip(cax, labels=labels) mpld3.plugins.connect(fig, tooltip) mpld3.show() # sio = StringIO() # plt.savefig(sio, format='png') # return sio.getvalue()
Example #8
Source File: drawing.py From crappy with GNU General Public License v2.0 | 5 votes |
def update(self,data): self.txt.set_text(self.text%data[self.label]) self.dot.set_color(cm.coolwarm((data[self.label]-self.low)/self.amp))
Example #9
Source File: network.py From Hopfield-Network with MIT License | 5 votes |
def plot_weights(self): plt.figure(figsize=(6, 5)) w_mat = plt.imshow(self.W, cmap=cm.coolwarm) plt.colorbar(w_mat) plt.title("Network Weights") plt.tight_layout() plt.savefig("weights.png") plt.show()
Example #10
Source File: pendulum_dpg.py From mushroom-rl with MIT License | 5 votes |
def __init__(self, V, mu, low, high, phi, psi): plt.ion() self._V = V self._mu = mu self._phi = phi self._psi = psi fig = plt.figure(figsize=(10, 5)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) self._theta = np.linspace(low[0], high[0], 100) self._omega = np.linspace(low[1], high[1], 100) vv, mm = self._compute_data() ext = [low[0], high[0], low[1], high[1]] ax1.set_title('V') im1 = ax1.imshow(vv, cmap=cm.coolwarm, extent=ext, aspect='auto') fig.colorbar(im1, ax=ax1) ax2.set_title('mean') im2 = ax2.imshow(mm, cmap=cm.coolwarm, extent=ext, aspect='auto') fig.colorbar(im2, ax=ax2) self._im = [im1, im2] self._counter = 0 plt.draw() plt.pause(0.1)
Example #11
Source File: pendulum_ac.py From mushroom-rl with MIT License | 5 votes |
def __init__(self, V, mu, std, low, high, phi, psi): plt.ion() self._V = V self._mu = mu self._std = std self._phi = phi self._psi = psi fig = plt.figure(figsize=(15, 5)) ax1 = fig.add_subplot(1, 3, 1) ax2 = fig.add_subplot(1, 3, 2) ax3 = fig.add_subplot(1, 3, 3) self._theta = np.linspace(low[0], high[0], 100) self._omega = np.linspace(low[1], high[1], 100) vv, mm, ss = self._compute_data() ext = [low[0], high[0], low[1], high[1]] ax1.set_title('V') im1 = ax1.imshow(vv, cmap=cm.coolwarm, extent=ext, aspect='auto') fig.colorbar(im1, ax=ax1) ax2.set_title('mean') im2 = ax2.imshow(mm, cmap=cm.coolwarm, extent=ext, aspect='auto') fig.colorbar(im2, ax=ax2) ax3.set_title('sigma') im3 = ax3.imshow(ss, cmap=cm.coolwarm, extent=ext, aspect='auto') fig.colorbar(im3, ax=ax3) self._im = [im1, im2, im3] self._counter = 0 plt.draw() plt.pause(.1)
Example #12
Source File: simulation.py From hypermax with BSD 3-Clause "New" or "Revised" License | 5 votes |
def createInteractionChartExample(): algo = AlgorithmSimulation() param1 = algo.createHyperParameter() param2 = algo.createHyperParameter() interaction = algo.createHyperParameterInteraction(param1, param2, type=3) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import cm fig = plt.figure() ax = fig.gca(projection='3d') funcStore = {} exec("import math\nimport scipy.interpolate\nfrom scipy.stats import norm\nfunc = " + interaction['func'], funcStore) func = funcStore['func'] xVals = numpy.linspace(0, 1, 25) yVals = numpy.linspace(0, 1, 25) grid = [] for x in xVals: row = [] for y in yVals: row.append(func(x, y)[0]) grid.append(row) # Plot the surface. xVals, yVals = numpy.meshgrid(xVals, yVals) surf = ax.plot_surface(xVals, yVals, numpy.array(grid), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1) # Customize the z axis. ax.set_zlim(0, 1.00) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()
Example #13
Source File: simulation.py From hypermax with BSD 3-Clause "New" or "Revised" License | 5 votes |
def createContributionChartExample(): algo = AlgorithmSimulation() param1 = algo.createHyperParameter() contribution = algo.createHyperParameterContribution(param1, type=4) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import cm fig, ax = plt.subplots() print(contribution['func']) funcStore = {} exec("import math\nimport scipy.interpolate\nfunc = " + contribution['func'], funcStore) func = funcStore['func'] xVals = numpy.linspace(0, 1, 25) yVals = [] for x in xVals: yVals.append(func(x)) # Plot the surface. surf = ax.scatter(numpy.array(xVals), numpy.array(yVals), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1) plt.show()
Example #14
Source File: simulation.py From hypermax with BSD 3-Clause "New" or "Revised" License | 5 votes |
def createInteractionChartExample(): algo = AlgorithmSimulation() param1 = algo.createHyperParameter() param2 = algo.createHyperParameter() interaction = algo.createHyperParameterInteraction(param1, param2, type=3) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import cm fig = plt.figure() ax = fig.gca(projection='3d') funcStore = {} exec("import math\nimport scipy.interpolate\nfrom scipy.stats import norm\nfunc = " + interaction['func'], funcStore) func = funcStore['func'] xVals = numpy.linspace(0, 1, 25) yVals = numpy.linspace(0, 1, 25) grid = [] for x in xVals: row = [] for y in yVals: row.append(func(x, y)[0]) grid.append(row) # Plot the surface. xVals, yVals = numpy.meshgrid(xVals, yVals) surf = ax.plot_surface(xVals, yVals, numpy.array(grid), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1) # Customize the z axis. ax.set_zlim(0, 1.00) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()
Example #15
Source File: simulation.py From hypermax with BSD 3-Clause "New" or "Revised" License | 5 votes |
def createContributionChartExample(type=4): algo = AlgorithmSimulation() param1 = algo.createHyperParameter() contribution = algo.createHyperParameterContribution(param1, type=type) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import cm fig, ax = plt.subplots() print(contribution['func']) funcStore = {} exec("import math\nimport scipy.interpolate\nfunc = " + contribution['func'], funcStore) func = funcStore['func'] xVals = numpy.linspace(0, 1, 25) yVals = [] for x in xVals: yVals.append(func(x)) # Plot the surface. surf = ax.scatter(numpy.array(xVals), numpy.array(yVals), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1) plt.show()
Example #16
Source File: tools.py From L2L with GNU General Public License v3.0 | 5 votes |
def plot(fn, random_state): """ Implements plotting of 2D functions generated by FunctionGenerator :param fn: Instance of FunctionGenerator """ import numpy as np from l2l.matplotlib_ import plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter fig = plt.figure() ax = fig.gca(projection=Axes3D.name) # Make data. X = np.arange(fn.bound[0], fn.bound[1], 0.05) Y = np.arange(fn.bound[0], fn.bound[1], 0.05) XX, YY = np.meshgrid(X, Y) Z = [fn.cost_function([x, y], random_state=random_state) for x, y in zip(XX.ravel(), YY.ravel())] Z = np.array(Z).reshape(XX.shape) # Plot the surface. surf = ax.plot_surface(XX, YY, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False) # Customize the z axis. # ax.set_zlim(-1.01, 1.01) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) W = np.where(Z == np.min(Z)) ax.set(title='Min value is %.2f at (%.2f, %.2f)' % (np.min(Z), X[W[0]], Y[W[1]])) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.savefig('function.png') plt.show()
Example #17
Source File: density.py From SqueezeMeta with GNU General Public License v3.0 | 5 votes |
def plot(self, data, xlabel, ylabel): # set size of figure self.fig.clear() self.fig.set_size_inches(self.options.width, self.options.height) axis = self.fig.add_subplot(111) cax = axis.imshow(data, cmap=cm.coolwarm) cbar = self.fig.colorbar(cax) axis.set_xlabel(xlabel) axis.set_ylabel(ylabel) axis.set_yticks([0, 4, 8, 12, 16, 20]) axis.set_yticklabels(['100', '90', '80', '70', '60', '50']) # *** Prettify plot for line in axis.yaxis.get_ticklines(): line.set_color(self.axes_colour) for line in axis.xaxis.get_ticklines(): line.set_color(self.axes_colour) for loc, spine in axis.spines.items(): spine.set_color(self.axes_colour) self.fig.tight_layout(pad=1.0, w_pad=0.1, h_pad=0.1) self.draw()
Example #18
Source File: plt_results2D.py From snn4hrl with MIT License | 5 votes |
def plot_reward(fig, data_unpickle, color, fig_dir): env = data_unpickle['env'] # retrieve original policy poli = data_unpickle['policy'] mean = poli.get_action(np.array((0, 0)))[1]['mean'] logstd = poli.get_action(np.array((0, 0)))[1]['log_std'] # def normal(x): return 1/(np.exp(logstd)*np.sqrt(2*np.pi) )*np.exp(-0.5/np.exp(logstd)**2*(x-mean)**2) ax = fig.gca(projection='3d') bound = env.mu[0]*1.2 # bound to plot: 20% more than the good modes X = np.arange(-bound, bound, 0.05) Y = np.arange(-bound, bound, 0.05) X, Y = np.meshgrid(X, Y) X_flat = X.reshape((-1, 1)) Y_flat = Y.reshape((-1, 1)) XY = np.concatenate((X_flat, Y_flat), axis=1) rew = np.array([env.reward_state(xy) for xy in XY]).reshape(np.shape(X)) surf = ax.plot_surface(X, Y, rew, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) # policy_at0 = [normal(s) for s in x] # plt.plot(x,policy_at0,color=color*0.5,label='Policy at 0') plt.title('Reward acording to the state') fig.colorbar(surf, shrink=0.8) # plt.show() if fig_dir: plt.savefig(os.path.join(fig_dir, 'Reward_function')) else: print("No directory for saving plots") # Plot learning curve
Example #19
Source File: HofMoellerSpark.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def createHoffmueller(self, data, coordSeries, timeSeries, coordName, title, interpolate='nearest'): cmap = cm.coolwarm # ls = LightSource(315, 45) # rgb = ls.shade(data, cmap) fig, ax = plt.subplots() fig.set_size_inches(11.0, 8.5) cax = ax.imshow(data, interpolation=interpolate, cmap=cmap) def yFormatter(y, pos): if y < len(coordSeries): return "%s $^\circ$" % (int(coordSeries[int(y)] * 100.0) / 100.) else: return "" def xFormatter(x, pos): if x < len(timeSeries): return timeSeries[int(x)].strftime('%b %Y') else: return "" ax.xaxis.set_major_formatter(FuncFormatter(xFormatter)) ax.yaxis.set_major_formatter(FuncFormatter(yFormatter)) ax.set_title(title) ax.set_ylabel(coordName) ax.set_xlabel('Date') fig.colorbar(cax) fig.autofmt_xdate() labels = ['point {0}'.format(i + 1) for i in range(len(data))] # plugins.connect(fig, plugins.MousePosition(fontsize=14)) tooltip = mpld3.plugins.PointLabelTooltip(cax, labels=labels) sio = StringIO() plt.savefig(sio, format='png') return sio.getvalue()
Example #20
Source File: lon_hof_moeller.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def createHoffmueller(data, coordSeries, timeSeries, coordName, title, interpolate='nearest'): cmap = cm.coolwarm # ls = LightSource(315, 45) # rgb = ls.shade(data, cmap) fig, ax = plt.subplots() fig.set_size_inches(11.0, 8.5) cax = ax.imshow(data, interpolation=interpolate, cmap=cmap) def yFormatter(y, pos): if y < len(coordSeries): return "%s $^\circ$" % (int(coordSeries[int(y)] * 100.0) / 100.) else: return "" def xFormatter(x, pos): if x < len(timeSeries): return timeSeries[int(x)].strftime('%b %Y') else: return "" ax.xaxis.set_major_formatter(FuncFormatter(xFormatter)) ax.yaxis.set_major_formatter(FuncFormatter(yFormatter)) ax.set_title(title) ax.set_ylabel(coordName) ax.set_xlabel('Date') fig.colorbar(cax) fig.autofmt_xdate() plt.show()
Example #21
Source File: lat_hof_moeller.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def createHoffmueller(data, coordSeries, timeSeries, coordName, title, interpolate='nearest'): cmap = cm.coolwarm # ls = LightSource(315, 45) # rgb = ls.shade(data, cmap) fig, ax = plt.subplots() fig.set_size_inches(11.0, 8.5) cax = ax.imshow(data, interpolation=interpolate, cmap=cmap) def yFormatter(y, pos): if y < len(coordSeries): return "%s $^\circ$" % (int(coordSeries[int(y)] * 100.0) / 100.) else: return "" def xFormatter(x, pos): if x < len(timeSeries): return timeSeries[int(x)].strftime('%b %Y') else: return "" ax.xaxis.set_major_formatter(FuncFormatter(xFormatter)) ax.yaxis.set_major_formatter(FuncFormatter(yFormatter)) ax.set_title(title) ax.set_ylabel(coordName) ax.set_xlabel('Date') fig.colorbar(cax) fig.autofmt_xdate() plt.show()
Example #22
Source File: read_NOM_maps.py From xrt with MIT License | 5 votes |
def plot_NOM_3D(fname): from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter xL, yL, zL = np.loadtxt(fname+'.dat', unpack=True) nX = (yL == yL[0]).sum() nY = (xL == xL[0]).sum() x = xL.reshape((nY, nX)) y = yL.reshape((nY, nX)) z = zL.reshape((nY, nX)) x1D = xL[:nX] y1D = yL[::nX] # z += z[::-1, :] zmax = abs(z).max() fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False, alpha=0.5) ax.set_zlim(-zmax, zmax) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) fig.colorbar(surf, shrink=0.5, aspect=5) splineZ = ndimage.spline_filter(z.T) nrays = 1e3 xnew = np.random.uniform(x1D[0], x1D[-1], nrays) ynew = np.random.uniform(y1D[0], y1D[-1], nrays) coords = np.array([(xnew-x1D[0]) / (x1D[-1]-x1D[0]) * (nX-1), (ynew-y1D[0]) / (y1D[-1]-y1D[0]) * (nY-1)]) znew = ndimage.map_coordinates(splineZ, coords, prefilter=True) ax.scatter(xnew, ynew, znew, c=znew, marker='o', color='gray', s=50, cmap=cm.coolwarm) fig.savefig(fname+'_3d.png') plt.show()
Example #23
Source File: plot_utils.py From copula-py with GNU General Public License v3.0 | 5 votes |
def plot_3d(X,Y,Z, titleStr): fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf, shrink=0.5, aspect=5) plt.xlabel('U1') plt.ylabel('U2') plt.title(titleStr) plt.show()
Example #24
Source File: HookClass.py From pySDC with BSD 2-Clause "Simplified" License | 5 votes |
def post_step(self, status): """ Overwrite standard dump per step Args: status: status object per step """ super(plot_solution,self).post_step(status) if False: yplot = self.level.uend.values xx = self.level.prob.xc yy = self.level.prob.yc self.fig.clear() plt.plot( xx[:,0], yplot[0,:,0]) plt.ylim([-1.0, 1.0]) plt.show(block=False) plt.pause(0.00001) if True: yplot = self.level.uend.values xx = self.level.prob.xc zz = self.level.prob.yc self.fig.clear() CS = plt.contourf(xx, zz, yplot[0,:,:], rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) cbar = plt.colorbar(CS) #plt.axes().set_xlim(xmin = self.level.prob.x_b[0], xmax = self.level.prob.x_b[1]) #plt.axes().set_ylim(ymin = self.level.prob.z_b[0], ymax = self.level.prob.z_b[1]) #plt.axes().set_aspect('equal') plt.xlabel('x') plt.ylabel('z') #plt.tight_layout() plt.show(block=False) plt.pause(0.00001) return None
Example #25
Source File: HookClass.py From pySDC with BSD 2-Clause "Simplified" License | 5 votes |
def post_step(self, status): """ Overwrite standard dump per step Args: status: status object per step """ super(plot_solution,self).post_step(status) #yplot = self.level.uend.values #xx = self.level.prob.xx #zz = self.level.prob.zz #self.fig.clear() #plt.plot( xx[:,0], yplot[2,:,0]) #plt.ylim([-1.1, 1.1]) #plt.show(block=False) #plt.pause(0.00001) if True: yplot = self.level.uend.values xx = self.level.prob.xx zz = self.level.prob.zz self.fig.clear() CS = plt.contourf(xx, zz, yplot[2,:,:], rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) cbar = plt.colorbar(CS) plt.axes().set_xlim(xmin = self.level.prob.x_bounds[0], xmax = self.level.prob.x_bounds[1]) plt.axes().set_ylim(ymin = self.level.prob.z_bounds[0], ymax = self.level.prob.z_bounds[1]) plt.axes().set_aspect('equal') plt.xlabel('x') plt.ylabel('z') #plt.tight_layout() plt.show(block=False) plt.pause(0.00001) return None
Example #26
Source File: simple_linear_regression.py From deep-learning-samples with The Unlicense | 5 votes |
def plot_cost_3D(x, y, costfunc, mb_history=None): """Plot cost as 3D and contour. x, y: arrays of data. costfunc: cost function with signature like compute_cost. mb_history: if provided, it's a sequence of (m, b) pairs that are added as crosshairs markers on top of the contour plot. """ lim = 10.0 N = 250 ms = np.linspace(-lim, lim, N) bs = np.linspace(-lim, lim, N) cost = np.zeros((N, N)) for m_idx in range(N): for b_idx in range(N): cost[m_idx, b_idx] = costfunc(x, y, ms[m_idx], bs[b_idx]) # Configure 3D plot. fig = plt.figure() fig.set_tight_layout(True) ax1 = fig.add_subplot(1, 2, 1, projection='3d') ax1.set_xlabel('b') ax1.set_ylabel('m') msgrid, bsgrid = np.meshgrid(ms, bs) surf = ax1.plot_surface(msgrid, bsgrid, cost, cmap=cm.coolwarm) # Configure contour plot. ax2 = fig.add_subplot(1, 2, 2) ax2.contour(msgrid, bsgrid, cost) ax2.set_xlabel('b') ax2.set_ylabel('m') if mb_history: ms, bs = zip(*mb_history) plt.plot(bs, ms, 'rx', mew=3, ms=5) plt.show()
Example #27
Source File: gif_gen.py From pyGPGO with MIT License | 5 votes |
def plotFranke(): x = np.linspace(0, 1, num=1000) y = np.linspace(0, 1, num=1000) X, Y = np.meshgrid(x, y) Z = f(X, Y) ax = fig.add_subplot(1, 2, 1, projection='3d') ax.set_title('Original function') surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0) fig.colorbar(surf, shrink=0.5, aspect=5)
Example #28
Source File: drawing.py From crappy with GNU General Public License v2.0 | 5 votes |
def prepare(self): plt.switch_backend(self.backend) self.fig, self.ax = plt.subplots(figsize=self.window_size) image = self.ax.imshow(plt.imread(self.image), cmap=cm.coolwarm) image.set_clim(-0.5, 1) cbar = self.fig.colorbar(image, ticks=[-0.5, 1], fraction=0.061, orientation='horizontal', pad=0.04) cbar.set_label('Temperatures(C)') cbar.ax.set_xticklabels(self.crange) self.ax.set_title(self.title) self.ax.set_axis_off() self.elements = [] for d in self.draw: self.elements.append(elements[d['type']](self,**d))
Example #29
Source File: plotting.py From incubator-sdap-nexus with Apache License 2.0 | 4 votes |
def createLatLonTimeAverageMap(res, meta, startTime=None, endTime=None): latSeries = [m[0]['lat'] for m in res][::-1] lonSeries = [m['lon'] for m in res[0]] data = np.zeros((len(latSeries), len(lonSeries))) for t in range(0, len(latSeries)): latSet = res[t] for l in range(0, len(lonSeries)): data[len(latSeries) - t - 1][l] = latSet[l]['avg'] def yFormatter(y, pos): if y < len(latSeries): return '%s $^\circ$' % (int(latSeries[int(y)] * 100.0) / 100.) else: return "" def xFormatter(x, pos): if x < len(lonSeries): return "%s $^\circ$" % (int(lonSeries[int(x)] * 100.0) / 100.) else: return "" data[data == 0.0] = np.nan fig, ax = plt.subplots() fig.set_size_inches(11.0, 8.5) cmap = cm.coolwarm ls = LightSource(315, 45) masked_array = np.ma.array(data, mask=np.isnan(data)) rgb = ls.shade(masked_array, cmap) cax = ax.imshow(rgb, interpolation='nearest', cmap=cmap) ax.yaxis.set_major_formatter(FuncFormatter(yFormatter)) ax.xaxis.set_major_formatter(FuncFormatter(xFormatter)) title = meta['title'] source = meta['source'] if startTime is not None and endTime is not None: if type(startTime) is not datetime.datetime: startTime = datetime.datetime.fromtimestamp(startTime / 1000) if type(endTime) is not datetime.datetime: endTime = datetime.datetime.fromtimestamp(endTime / 1000) dateRange = "%s - %s" % (startTime.strftime('%b %Y'), endTime.strftime('%b %Y')) else: dateRange = "" ax.set_title("%s\n%s\n%s" % (title, source, dateRange)) ax.set_ylabel('Latitude') ax.set_xlabel('Longitude') fig.colorbar(cax) fig.autofmt_xdate() sio = StringIO() plt.savefig(sio, format='png') return sio.getvalue()
Example #30
Source File: BaseConditionalDensity.py From Conditional_Density_Estimation with MIT License | 4 votes |
def plot3d(self, xlim=(-5, 5), ylim=(-8, 8), resolution=100, show=False, numpyfig=False): """ Generates a 3d surface plot of the fitted conditional distribution if x and y are 1-dimensional each Args: xlim: 2-tuple specifying the x axis limits ylim: 2-tuple specifying the y axis limits resolution: integer specifying the resolution of plot """ assert self.ndim_x + self.ndim_y == 2, "Can only plot two dimensional distributions" if show == False and mpl.is_interactive(): plt.ioff() mpl.use('Agg') # prepare mesh linspace_x = np.linspace(xlim[0], xlim[1], num=resolution) linspace_y = np.linspace(ylim[0], ylim[1], num=resolution) X, Y = np.meshgrid(linspace_x, linspace_y) X, Y = X.flatten(), Y.flatten() # calculate values of distribution Z = self.pdf(X, Y) X, Y, Z = X.reshape([resolution, resolution]), Y.reshape([resolution, resolution]), Z.reshape( [resolution, resolution]) fig = plt.figure(dpi=300) ax = fig.gca(projection='3d') surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, rcount=resolution, ccount=resolution, linewidth=100, antialiased=True) plt.xlabel("x") plt.ylabel("y") if show: plt.show() if numpyfig: fig.tight_layout(pad=0) fig.canvas.draw() numpy_img = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') numpy_img = numpy_img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) return numpy_img return fig