Python attrdict.AttrDict() Examples

The following are 30 code examples of attrdict.AttrDict(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module attrdict , or try the search function .
Example #1
Source File: run.py    From onssen with GNU General Public License v3.0 6 votes vote down vote up
def main():
    config_path = './config.json'
    with open(config_path) as f:
        args = json.load(f)
        args = AttrDict(args)
    device = torch.device(args.device)
    args.model = nn.chimera(**(args['model_options']))
    args.model.to(device)
    args.train_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'tr', device)
    args.valid_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'cv', device)
    args.test_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'tt', device)
    args.optimizer = utils.build_optimizer(args.model.parameters(), args.optimizer_options)
    args.loss_fn = loss.loss_chimera_msa
    trainer = utils.trainer(args)
    trainer.run()
    tester = tester_chimera(args)
    tester.eval() 
Example #2
Source File: loaders.py    From open-solution-salt-identification with MIT License 6 votes vote down vote up
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params):
        super().__init__()
        self.train_mode = train_mode
        self.loader_params = AttrDict(loader_params)
        self.dataset_params = AttrDict(dataset_params)
        self.augmentation_params = AttrDict(augmentation_params)

        self.mask_transform = None
        self.image_transform = None

        self.image_augment_train = None
        self.image_augment_inference = None
        self.image_augment_with_target_train = None
        self.image_augment_with_target_inference = None

        self.dataset = None 
Example #3
Source File: tokenizer.py    From gap with MIT License 6 votes vote down vote up
def transform(self, X):
        try:
            res = []
            for idx, row in tqdm(X.iterrows(), total=len(X)):
                res.append(self.tokenizer.tokenize(**row)[1:])

            res = pd.DataFrame(res, columns=['tokens', 'pronoun_offset_token',
                                                    'a_offset_token', 'b_offset_token', 'a_span',
                                                    'b_span', 'pronoun_token', 'a_tokens', 'b_tokens'])

            cols = set(X.columns).difference(res.columns)
            X = pd.concat([X[cols], res], axis=1)
            return AttrDict({'X': X})
        except Exception as e:
            print(row.text)
            raise e 
Example #4
Source File: text_sanitizer.py    From gap with MIT License 6 votes vote down vote up
def example_to_debug(self, X, idx):
        ex = AttrDict(X['X'].to_dict(orient='records')[idx])
        
        text = ex.text
        text = '{}<A>{}'.format(text[:ex.a_offset], text[ex.a_offset:])
        text = '{}<B>{}'.format(text[:ex.b_offset+3], text[ex.b_offset+3:])
        
        offset = ex.pronoun_offset
        if ex.pronoun_offset > ex.a_offset:
            offset += 3
        if ex.pronoun_offset > ex.b_offset:
            offset += 3
            
        text = '{}<P>{}'.format(text[:offset], text[offset:])

        ex.a_offset = text.index('<A>')
        ex.b_offset = text.index('<B>')
        ex.pronoun_offset = text.index('<P>')

        ex.text = text
        
        return ex 
Example #5
Source File: wavedrom.py    From wavedrompy with MIT License 6 votes vote down vote up
def __init__(self):

        self.font_width = 7
        self.lane = AttrDict({
            "xs": 20,    # tmpgraphlane0.width
            "ys": 20,    # tmpgraphlane0.height
            "xg": 120,   # tmpgraphlane0.x
            "yg": 0,     # head gap
            "yh0": 0,     # head gap title
            "yh1": 0,     # head gap
            "yf0": 0,     # foot gap
            "yf1": 0,     # foot gap
            "y0": 5,     # tmpgraphlane0.y
            "yo": 30,    # tmpgraphlane1.y - y0
            "tgo": -10,   # tmptextlane0.x - xg
            "ym": 15,    # tmptextlane0.y - y0
            "xlabel": 6,     # tmptextlabel.x - xg
            "xmax": 1,
            "scale": 1,
            "head": {},
            "foot": {}
        }) 
Example #6
Source File: loaders.py    From open-solution-ship-detection with MIT License 6 votes vote down vote up
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params):
        super().__init__()
        self.train_mode = train_mode
        self.loader_params = AttrDict(loader_params)
        self.dataset_params = AttrDict(dataset_params)
        self.augmentation_params = AttrDict(augmentation_params)

        self.mask_transform = None
        self.image_transform = None

        self.image_augment_train = None
        self.image_augment_inference = None
        self.image_augment_with_target_train = None
        self.image_augment_with_target_inference = None

        self.dataset = None 
Example #7
Source File: shell.py    From frida-skeleton with MIT License 6 votes vote down vote up
def exec(self, cmd: str, quiet=False, supress_error=False) -> AttrDict:
        ret = AttrDict()

        if not quiet:
            self.log.debug(cmd)

        p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, close_fds=True)

        # output processing
        out = p.stdout.read().decode().strip()
        ret.out = out
        err = p.stderr.read().decode().strip()
        ret.err = err

        output = '{} <output> {}'.format(cmd, out if out else 'Nothing')

        if err and not supress_error:
            output += ' <error> ' + err

        if not quiet:
            self.log.debug(output)

        return ret 
Example #8
Source File: mnist_data.py    From forge with GNU General Public License v3.0 6 votes vote down vote up
def load(config, **unused_kwargs):

    del unused_kwargs

    if not os.path.exists(config.data_folder):
        os.makedirs(config.data_folder)

    dataset = input_data.read_data_sets(config.data_folder)

    train_data = {'imgs': dataset.train.images, 'labels': dataset.train.labels}
    valid_data = {'imgs': dataset.validation.images, 'labels': dataset.validation.labels}

    # This function turns a dictionary of numpy.ndarrays into tensors.
    train_tensors = tensors_from_data(train_data, config.batch_size, shuffle=True)
    valid_tensors = tensors_from_data(valid_data, config.batch_size, shuffle=False)

    data_dict = AttrDict(
        train_img=train_tensors['imgs'],
        valid_img=valid_tensors['imgs'],
        train_label=train_tensors['labels'],
        valid_label=valid_tensors['labels'],
    )

    return data_dict 
Example #9
Source File: mnist_data.py    From forge with GNU General Public License v3.0 6 votes vote down vote up
def load(config, **unused_kwargs):

    del unused_kwargs

    if not os.path.exists(config.data_folder):
        os.makedirs(config.data_folder)

    dataset = input_data.read_data_sets(config.data_folder)

    train_data = {'imgs': dataset.train.images, 'labels': dataset.train.labels}
    valid_data = {'imgs': dataset.validation.images, 'labels': dataset.validation.labels}

    train_tensors = tensors_from_data(train_data, config.batch_size, shuffle=True)
    valid_tensors = tensors_from_data(valid_data, config.batch_size, shuffle=False)

    data_dict = AttrDict(
        train_img=train_tensors['imgs'],
        valid_img=valid_tensors['imgs'],
        train_label=train_tensors['labels'],
        valid_label=valid_tensors['labels'],
    )

    return data_dict 
Example #10
Source File: fretboard.py    From python-fretboard with MIT License 6 votes vote down vote up
def __init__(self, strings=6, frets=(0, 5), inlays=None, style=None):
        self.frets = list(range(max(frets[0] - 1, 0), frets[1] + 1))
        self.strings = [attrdict.AttrDict({
            'color': None,
            'label': None,
            'font_color': None,
        }) for x in range(strings)]

        self.markers = []

        self.inlays = inlays if inlays is not None else self.inlays

        self.layout = attrdict.AttrDict()

        self.style = attrdict.AttrDict(
            dict_merge(
                copy.deepcopy(self.default_style),
                style or {}
            )
        ) 
Example #11
Source File: loaders.py    From open-solution-googleai-object-detection with MIT License 6 votes vote down vote up
def __init__(self, train_mode, loader_params, dataset_params):
        super().__init__()
        self.train_mode = train_mode
        self.loader_params = AttrDict(loader_params)
        self.dataset_params = AttrDict(dataset_params)

        sampler_name = self.dataset_params.sampler_name
        if sampler_name == 'fixed':
            self.sampler = FixedSizeSampler
        elif sampler_name == 'aspect ratio':
            self.sampler = AspectRatioSampler
        else:
            msg = "expected sampler name from (fixed, aspect ratio), got {} instead".format(sampler_name)
            raise Exception(msg)

        self.target_encoder = DataEncoder(**self.dataset_params.data_encoder)
        self.dataset = ImageDetectionDataset

        self.image_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=MEAN, std=STD),
        ])
        self.image_augment = aug_seq 
Example #12
Source File: evaluate_model.py    From sgan with MIT License 6 votes vote down vote up
def get_generator(checkpoint):
    args = AttrDict(checkpoint['args'])
    generator = TrajectoryGenerator(
        obs_len=args.obs_len,
        pred_len=args.pred_len,
        embedding_dim=args.embedding_dim,
        encoder_h_dim=args.encoder_h_dim_g,
        decoder_h_dim=args.decoder_h_dim_g,
        mlp_dim=args.mlp_dim,
        num_layers=args.num_layers,
        noise_dim=args.noise_dim,
        noise_type=args.noise_type,
        noise_mix_type=args.noise_mix_type,
        pooling_type=args.pooling_type,
        pool_every_timestep=args.pool_every_timestep,
        dropout=args.dropout,
        bottleneck_dim=args.bottleneck_dim,
        neighborhood_size=args.neighborhood_size,
        grid_size=args.grid_size,
        batch_norm=args.batch_norm)
    generator.load_state_dict(checkpoint['g_state'])
    generator.cuda()
    generator.train()
    return generator 
Example #13
Source File: evaluate_model.py    From sgan with MIT License 6 votes vote down vote up
def main(args):
    if os.path.isdir(args.model_path):
        filenames = os.listdir(args.model_path)
        filenames.sort()
        paths = [
            os.path.join(args.model_path, file_) for file_ in filenames
        ]
    else:
        paths = [args.model_path]

    for path in paths:
        checkpoint = torch.load(path)
        generator = get_generator(checkpoint)
        _args = AttrDict(checkpoint['args'])
        path = get_dset_path(_args.dataset_name, args.dset_type)
        _, loader = data_loader(_args, path)
        ade, fde = evaluate(_args, loader, generator, args.num_samples)
        print('Dataset: {}, Pred Len: {}, ADE: {:.2f}, FDE: {:.2f}'.format(
            _args.dataset_name, _args.pred_len, ade, fde)) 
Example #14
Source File: run.py    From onssen with GNU General Public License v3.0 6 votes vote down vote up
def main():
    parser = argparse.ArgumentParser(description='Parse the config path')
    parser.add_argument("-c", "--config", dest="path",
                        help='The path to the config file. e.g. python run.py --config dc_config.json')

    config = parser.parse_args()
    with open(config.path) as f:
        args = json.load(f)
        args = AttrDict(args)
    device = torch.device(args.device)
    args.model = onssen.nn.chimera(args.model_options)
    args.model.to(device)
    args.train_loader = data.edinburgh_tts_dataloader(args.model_name, args.feature_options, 'train', args.cuda_option, self.device)
    args.valid_loader = data.edinburgh_tts_dataloader(args.model_name, args.feature_options, 'validation', args.cuda_option, self.device)
    args.optimizer = utils.build_optimizer(args.model.parameters(), args.optimizer_options)
    args.loss_fn = loss.loss_chimera_psa
    trainer = onssen.utils.trainer(args)
    trainer.run()

    tester = onssen.utils.tester(args)
    tester.eval() 
Example #15
Source File: run.py    From onssen with GNU General Public License v3.0 6 votes vote down vote up
def main():
    config_path = './config.json'
    with open(config_path) as f:
        args = json.load(f)
        args = AttrDict(args)
    device = torch.device(args.device)
    args.device = device
    args.model = nn.ConvTasNet(**args["model_options"])
    args.model.to(device)
    args.train_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'tr', device)
    args.valid_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'cv', device)
    args.test_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'tt', device)
    args.optimizer = utils.build_optimizer(args.model.parameters(), args.optimizer_options)
    args.loss_fn = loss.si_snr_loss
    trainer = utils.trainer(args)
    trainer.run()
    tester = tester_tasnet(args)
    tester.eval() 
Example #16
Source File: run.py    From onssen with GNU General Public License v3.0 6 votes vote down vote up
def main():
    parser = argparse.ArgumentParser(description='Parse the config path')
    parser.add_argument("-c", "--config", dest="path",
                        help='The path to the config file. e.g. python run.py --config onfig.json')

    config = parser.parse_args()
    with open(config.path) as f:
        args = json.load(f)
        args = AttrDict(args)
    device = torch.device(args.device)
    args.model = nn.deep_clustering(**(args['model_options']))
    args.model.to(device)
    args.train_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'tr', device)
    args.valid_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'cv', device)
    args.test_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'tt', device)
    args.optimizer = utils.build_optimizer(args.model.parameters(), args.optimizer_options)
    args.loss_fn = loss.loss_dc
    trainer = utils.trainer(args)
    trainer.run()

    tester = tester_dc(args)
    tester.eval() 
Example #17
Source File: chord.py    From python-fretboard with MIT License 6 votes vote down vote up
def __init__(self, positions=None, fingers=None, style=None):
        if positions is None:
            positions = []
        elif '-' in positions:
            positions = positions.split('-')
        else:
            positions = list(positions)
        self.positions = list(map(lambda p: int(p) if p.isdigit() else None, positions))

        self.fingers = list(fingers) if fingers else []

        self.style = attrdict.AttrDict(
            dict_merge(
                copy.deepcopy(self.default_style),
                style or {}
            )
        ) 
Example #18
Source File: run.py    From onssen with GNU General Public License v3.0 6 votes vote down vote up
def main():
    config_path = './config.json'
    with open(config_path) as f:
        args = json.load(f)
        args = AttrDict(args)
    device = torch.device(args.device)
    args.model = nn.chimera(**(args['model_options']))
    args.model.to(device)
    args.train_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'tr', device)
    args.valid_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'cv', device)
    args.test_loader = data.wsj0_2mix_dataloader(args.model_name, args.feature_options, 'tt', device)
    args.optimizer = utils.build_optimizer(args.model.parameters(), args.optimizer_options)
    args.loss_fn = loss.loss_chimera_psa
    trainer = utils.trainer(args)
    trainer.run()
    tester = tester_chimera(args)
    tester.eval() 
Example #19
Source File: segmentation.py    From steppy-toolkit with MIT License 6 votes vote down vote up
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params):
        super().__init__()
        self.train_mode = train_mode
        self.loader_params = AttrDict(loader_params)
        self.dataset_params = AttrDict(dataset_params)
        self.augmentation_params = AttrDict(augmentation_params)

        self.mask_transform = None
        self.image_transform = None

        self.image_augment_train = None
        self.image_augment_inference = None
        self.image_augment_with_target_train = None
        self.image_augment_with_target_inference = None

        self.dataset = None 
Example #20
Source File: models.py    From open-solution-home-credit with MIT License 5 votes vote down vote up
def model_config(self):
        return AttrDict({param: value for param, value in self.params.items()
                         if param not in self.training_params}) 
Example #21
Source File: utils.py    From open-solution-home-credit with MIT License 5 votes vote down vote up
def read_yaml(filepath):
    with open(filepath) as f:
        config = yaml.load(f)
    return AttrDict(config) 
Example #22
Source File: hyperparameter_tuning.py    From open-solution-home-credit with MIT License 5 votes vote down vote up
def get_random_config(tuning_config):
        config_run = {}
        for tunable_name in tuning_config.keys():
            param_choice = {}
            for param, value in tuning_config[tunable_name].items():
                param_range, sampling_mode = value
                param_choice[param] = RandomSearchTuner.random_sample_from_param_space(param_range, sampling_mode)
            config_run[tunable_name] = param_choice
        return AttrDict(config_run) 
Example #23
Source File: fastspeech.py    From NeMo with Apache License 2.0 5 votes vote down vote up
def main():
    args = parse_args()
    work_dir = Path(args.work_dir) / args.id
    engine = nemo.core.NeuralModuleFactory(
        local_rank=args.local_rank,
        optimization_level=args.amp_opt_level,
        cudnn_benchmark=args.cudnn_benchmark,
        log_dir=work_dir / 'log',
        checkpoint_dir=work_dir / 'checkpoints',
        tensorboard_dir=work_dir / 'tensorboard',
        files_to_copy=[args.model_config],
    )

    yaml_loader = yaml.YAML(typ="safe")
    with open(args.model_config) as f:
        config = attrdict.AttrDict(yaml_loader.load(f))
    logging.info(f'Config: {config}')
    graph = FastSpeechGraph(args, config, num_workers=max(int(os.cpu_count() / engine.world_size), 1))

    steps_per_epoch = math.ceil(len(graph.data_layer) / (args.batch_size * engine.world_size))
    total_steps = args.max_steps if args.max_steps is not None else args.num_epochs * steps_per_epoch
    loss, callbacks = graph.build()
    engine.train(
        tensors_to_optimize=[loss],
        optimizer=args.optimizer,
        optimization_params=dict(
            num_epochs=args.num_epochs,
            max_steps=total_steps,
            lr=args.lr,
            weight_decay=args.weight_decay,
            grad_norm_clip=args.grad_norm_clip,
        ),
        callbacks=callbacks,
        lr_policy=lr_policies.CosineAnnealing(total_steps, min_lr=args.min_lr, warmup_steps=4000),
    ) 
Example #24
Source File: models.py    From open-solution-mapping-challenge with MIT License 5 votes vote down vote up
def __init__(self, model_params, training_params):
        self.model_params = model_params
        self.training_params = AttrDict(training_params)
        self.evaluation_function = None 
Example #25
Source File: misc.py    From open-solution-mapping-challenge with MIT License 5 votes vote down vote up
def __init__(self, model_config, training_config):
        self.model_config = AttrDict(model_config)
        self.training_config = AttrDict(training_config)
        self.evaluation_function = None 
Example #26
Source File: utils.py    From open-solution-mapping-challenge with MIT License 5 votes vote down vote up
def read_config(config_path):
    with open(config_path) as f:
        config = yaml.load(f)
    return AttrDict(config) 
Example #27
Source File: loaders.py    From open-solution-mapping-challenge with MIT License 5 votes vote down vote up
def __init__(self, loader_params, dataset_params):
        super().__init__()
        self.loader_params = AttrDict(loader_params)
        self.dataset_params = AttrDict(dataset_params)

        self.image_transform = None
        self.mask_transform = None

        self.image_augment_with_target_train = None
        self.image_augment_with_target_inference = None
        self.image_augment_train = None
        self.image_augment_inference = None

        self.dataset = None 
Example #28
Source File: loaders.py    From open-solution-mapping-challenge with MIT License 5 votes vote down vote up
def __init__(self, **kwargs):
        self.tta_transformations = AttrDict(kwargs) 
Example #29
Source File: test_tracking.py    From mlflow with Apache License 2.0 5 votes vote down vote up
def test_set_experiment_with_zero_id(reset_mock):
    reset_mock(MlflowClient, "get_experiment_by_name",
               mock.Mock(return_value=attrdict.AttrDict(
                   experiment_id=0,
                   lifecycle_stage=LifecycleStage.ACTIVE)))
    reset_mock(MlflowClient, "create_experiment", mock.Mock())

    mlflow.set_experiment("my_exp")

    MlflowClient.get_experiment_by_name.assert_called_once()
    MlflowClient.create_experiment.assert_not_called() 
Example #30
Source File: utils.py    From open-solution-toxic-comments with MIT License 5 votes vote down vote up
def read_yaml(filepath):
    with open(filepath) as f:
        config = yaml.load(f)
    return AttrDict(config)