Python keras.utils.layer_utils.convert_all_kernels_in_model() Examples
The following are 8
code examples of keras.utils.layer_utils.convert_all_kernels_in_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.utils.layer_utils
, or try the search function
.
Example #1
Source File: encoders.py From keras-fcn with MIT License | 5 votes |
def __init__(self, inputs, blocks, weights=None, trainable=True, name='encoder'): inverse_pyramid = [] # convolutional block conv_blocks = blocks[:-1] for i, block in enumerate(conv_blocks): if i == 0: x = block(inputs) inverse_pyramid.append(x) elif i < len(conv_blocks) - 1: x = block(x) inverse_pyramid.append(x) else: x = block(x) # fully convolutional block fc_block = blocks[-1] y = fc_block(x) inverse_pyramid.append(y) outputs = list(reversed(inverse_pyramid)) super(Encoder, self).__init__( inputs=inputs, outputs=outputs) # load pre-trained weights if weights is not None: weights_path = get_file( '{}_weights_tf_dim_ordering_tf_kernels.h5'.format(name), weights, cache_subdir='models') layer_names = load_weights(self, weights_path) if K.image_data_format() == 'channels_first': layer_utils.convert_all_kernels_in_model(self) # Freezing basenet weights if trainable is False: for layer in self.layers: if layer.name in layer_names: layer.trainable = False
Example #2
Source File: layer_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_convert_weights(): def get_model(shape, data_format): model = Sequential() model.add(Conv2D(filters=2, kernel_size=(4, 3), input_shape=shape, data_format=data_format)) model.add(Flatten()) model.add(Dense(5)) return model for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': shape = (3, 5, 5) target_shape = (5, 5, 3) prev_shape = (2, 3, 2) flip = lambda x: np.flip(np.flip(x, axis=2), axis=3) transpose = lambda x: np.transpose(x, (0, 2, 3, 1)) target_data_format = 'channels_last' elif data_format == 'channels_last': shape = (5, 5, 3) target_shape = (3, 5, 5) prev_shape = (2, 2, 3) flip = lambda x: np.flip(np.flip(x, axis=1), axis=2) transpose = lambda x: np.transpose(x, (0, 3, 1, 2)) target_data_format = 'channels_first' model1 = get_model(shape, data_format) model2 = get_model(target_shape, target_data_format) conv = K.function([model1.input], [model1.layers[0].output]) x = np.random.random((1,) + shape) # Test equivalence of convert_all_kernels_in_model convout1 = conv([x])[0] layer_utils.convert_all_kernels_in_model(model1) convout2 = flip(conv([flip(x)])[0]) assert_allclose(convout1, convout2, atol=1e-5) # Test equivalence of convert_dense_weights_data_format out1 = model1.predict(x) layer_utils.convert_dense_weights_data_format(model1.layers[2], prev_shape, target_data_format) for (src, dst) in zip(model1.layers, model2.layers): dst.set_weights(src.get_weights()) out2 = model2.predict(transpose(x)) assert_allclose(out1, out2, atol=1e-5)
Example #3
Source File: layer_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_convert_weights(): def get_model(shape, data_format): model = Sequential() model.add(Conv2D(filters=2, kernel_size=(4, 3), input_shape=shape, data_format=data_format)) model.add(Flatten()) model.add(Dense(5)) return model for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': shape = (3, 5, 5) target_shape = (5, 5, 3) prev_shape = (2, 3, 2) flip = lambda x: np.flip(np.flip(x, axis=2), axis=3) transpose = lambda x: np.transpose(x, (0, 2, 3, 1)) target_data_format = 'channels_last' elif data_format == 'channels_last': shape = (5, 5, 3) target_shape = (3, 5, 5) prev_shape = (2, 2, 3) flip = lambda x: np.flip(np.flip(x, axis=1), axis=2) transpose = lambda x: np.transpose(x, (0, 3, 1, 2)) target_data_format = 'channels_first' model1 = get_model(shape, data_format) model2 = get_model(target_shape, target_data_format) conv = K.function([model1.input], [model1.layers[0].output]) x = np.random.random((1,) + shape) # Test equivalence of convert_all_kernels_in_model convout1 = conv([x])[0] layer_utils.convert_all_kernels_in_model(model1) convout2 = flip(conv([flip(x)])[0]) assert_allclose(convout1, convout2, atol=1e-5) # Test equivalence of convert_dense_weights_data_format out1 = model1.predict(x) layer_utils.convert_dense_weights_data_format(model1.layers[2], prev_shape, target_data_format) for (src, dst) in zip(model1.layers, model2.layers): dst.set_weights(src.get_weights()) out2 = model2.predict(transpose(x)) assert_allclose(out1, out2, atol=1e-5)
Example #4
Source File: layer_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_convert_weights(): def get_model(shape, data_format): model = Sequential() model.add(Conv2D(filters=2, kernel_size=(4, 3), input_shape=shape, data_format=data_format)) model.add(Flatten()) model.add(Dense(5)) return model for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': shape = (3, 5, 5) target_shape = (5, 5, 3) prev_shape = (2, 3, 2) flip = lambda x: np.flip(np.flip(x, axis=2), axis=3) transpose = lambda x: np.transpose(x, (0, 2, 3, 1)) target_data_format = 'channels_last' elif data_format == 'channels_last': shape = (5, 5, 3) target_shape = (3, 5, 5) prev_shape = (2, 2, 3) flip = lambda x: np.flip(np.flip(x, axis=1), axis=2) transpose = lambda x: np.transpose(x, (0, 3, 1, 2)) target_data_format = 'channels_first' model1 = get_model(shape, data_format) model2 = get_model(target_shape, target_data_format) conv = K.function([model1.input], [model1.layers[0].output]) x = np.random.random((1,) + shape) # Test equivalence of convert_all_kernels_in_model convout1 = conv([x])[0] layer_utils.convert_all_kernels_in_model(model1) convout2 = flip(conv([flip(x)])[0]) assert_allclose(convout1, convout2, atol=1e-5) # Test equivalence of convert_dense_weights_data_format out1 = model1.predict(x) layer_utils.convert_dense_weights_data_format(model1.layers[2], prev_shape, target_data_format) for (src, dst) in zip(model1.layers, model2.layers): dst.set_weights(src.get_weights()) out2 = model2.predict(transpose(x)) assert_allclose(out1, out2, atol=1e-5)
Example #5
Source File: layer_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_convert_weights(): def get_model(shape, data_format): model = Sequential() model.add(Conv2D(filters=2, kernel_size=(4, 3), input_shape=shape, data_format=data_format)) model.add(Flatten()) model.add(Dense(5)) return model for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': shape = (3, 5, 5) target_shape = (5, 5, 3) prev_shape = (2, 3, 2) flip = lambda x: np.flip(np.flip(x, axis=2), axis=3) transpose = lambda x: np.transpose(x, (0, 2, 3, 1)) target_data_format = 'channels_last' elif data_format == 'channels_last': shape = (5, 5, 3) target_shape = (3, 5, 5) prev_shape = (2, 2, 3) flip = lambda x: np.flip(np.flip(x, axis=1), axis=2) transpose = lambda x: np.transpose(x, (0, 3, 1, 2)) target_data_format = 'channels_first' model1 = get_model(shape, data_format) model2 = get_model(target_shape, target_data_format) conv = K.function([model1.input], [model1.layers[0].output]) x = np.random.random((1,) + shape) # Test equivalence of convert_all_kernels_in_model convout1 = conv([x])[0] layer_utils.convert_all_kernels_in_model(model1) convout2 = flip(conv([flip(x)])[0]) assert_allclose(convout1, convout2, atol=1e-5) # Test equivalence of convert_dense_weights_data_format out1 = model1.predict(x) layer_utils.convert_dense_weights_data_format(model1.layers[2], prev_shape, target_data_format) for (src, dst) in zip(model1.layers, model2.layers): dst.set_weights(src.get_weights()) out2 = model2.predict(transpose(x)) assert_allclose(out1, out2, atol=1e-5)
Example #6
Source File: layer_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_convert_weights(): def get_model(shape, data_format): model = Sequential() model.add(Conv2D(filters=2, kernel_size=(4, 3), input_shape=shape, data_format=data_format)) model.add(Flatten()) model.add(Dense(5)) return model for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': shape = (3, 5, 5) target_shape = (5, 5, 3) prev_shape = (2, 3, 2) flip = lambda x: np.flip(np.flip(x, axis=2), axis=3) transpose = lambda x: np.transpose(x, (0, 2, 3, 1)) target_data_format = 'channels_last' elif data_format == 'channels_last': shape = (5, 5, 3) target_shape = (3, 5, 5) prev_shape = (2, 2, 3) flip = lambda x: np.flip(np.flip(x, axis=1), axis=2) transpose = lambda x: np.transpose(x, (0, 3, 1, 2)) target_data_format = 'channels_first' model1 = get_model(shape, data_format) model2 = get_model(target_shape, target_data_format) conv = K.function([model1.input], [model1.layers[0].output]) x = np.random.random((1,) + shape) # Test equivalence of convert_all_kernels_in_model convout1 = conv([x])[0] layer_utils.convert_all_kernels_in_model(model1) convout2 = flip(conv([flip(x)])[0]) assert_allclose(convout1, convout2, atol=1e-5) # Test equivalence of convert_dense_weights_data_format out1 = model1.predict(x) layer_utils.convert_dense_weights_data_format(model1.layers[2], prev_shape, target_data_format) for (src, dst) in zip(model1.layers, model2.layers): dst.set_weights(src.get_weights()) out2 = model2.predict(transpose(x)) assert_allclose(out1, out2, atol=1e-5)
Example #7
Source File: layer_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_convert_weights(): def get_model(shape, data_format): model = Sequential() model.add(Conv2D(filters=2, kernel_size=(4, 3), input_shape=shape, data_format=data_format)) model.add(Flatten()) model.add(Dense(5)) return model for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': shape = (3, 5, 5) target_shape = (5, 5, 3) prev_shape = (2, 3, 2) flip = lambda x: np.flip(np.flip(x, axis=2), axis=3) transpose = lambda x: np.transpose(x, (0, 2, 3, 1)) target_data_format = 'channels_last' elif data_format == 'channels_last': shape = (5, 5, 3) target_shape = (3, 5, 5) prev_shape = (2, 2, 3) flip = lambda x: np.flip(np.flip(x, axis=1), axis=2) transpose = lambda x: np.transpose(x, (0, 3, 1, 2)) target_data_format = 'channels_first' model1 = get_model(shape, data_format) model2 = get_model(target_shape, target_data_format) conv = K.function([model1.input], [model1.layers[0].output]) x = np.random.random((1,) + shape) # Test equivalence of convert_all_kernels_in_model convout1 = conv([x])[0] layer_utils.convert_all_kernels_in_model(model1) convout2 = flip(conv([flip(x)])[0]) assert_allclose(convout1, convout2, atol=1e-5) # Test equivalence of convert_dense_weights_data_format out1 = model1.predict(x) layer_utils.convert_dense_weights_data_format(model1.layers[2], prev_shape, target_data_format) for (src, dst) in zip(model1.layers, model2.layers): dst.set_weights(src.get_weights()) out2 = model2.predict(transpose(x)) assert_allclose(out1, out2, atol=1e-5)
Example #8
Source File: layer_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_convert_weights(): def get_model(shape, data_format): model = Sequential() model.add(Conv2D(filters=2, kernel_size=(4, 3), input_shape=shape, data_format=data_format)) model.add(Flatten()) model.add(Dense(5)) return model for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': shape = (3, 5, 5) target_shape = (5, 5, 3) prev_shape = (2, 3, 2) flip = lambda x: np.flip(np.flip(x, axis=2), axis=3) transpose = lambda x: np.transpose(x, (0, 2, 3, 1)) target_data_format = 'channels_last' elif data_format == 'channels_last': shape = (5, 5, 3) target_shape = (3, 5, 5) prev_shape = (2, 2, 3) flip = lambda x: np.flip(np.flip(x, axis=1), axis=2) transpose = lambda x: np.transpose(x, (0, 3, 1, 2)) target_data_format = 'channels_first' model1 = get_model(shape, data_format) model2 = get_model(target_shape, target_data_format) conv = K.function([model1.input], [model1.layers[0].output]) x = np.random.random((1,) + shape) # Test equivalence of convert_all_kernels_in_model convout1 = conv([x])[0] layer_utils.convert_all_kernels_in_model(model1) convout2 = flip(conv([flip(x)])[0]) assert_allclose(convout1, convout2, atol=1e-5) # Test equivalence of convert_dense_weights_data_format out1 = model1.predict(x) layer_utils.convert_dense_weights_data_format(model1.layers[2], prev_shape, target_data_format) for (src, dst) in zip(model1.layers, model2.layers): dst.set_weights(src.get_weights()) out2 = model2.predict(transpose(x)) assert_allclose(out1, out2, atol=1e-5)