Python cifar10.inputs() Examples

The following are 18 code examples of cifar10.inputs(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cifar10 , or try the search function .
Example #1
Source File: 5_3_CNN_CIFAR10.py    From TensorFlow-HelloWorld with Apache License 2.0 6 votes vote down vote up
def loss(logits, labels):
#      """Add L2Loss to all the trainable variables.
#      Add summary for "Loss" and "Loss/avg".
#      Args:
#        logits: Logits from inference().
#        labels: Labels from distorted_inputs or inputs(). 1-D tensor
#                of shape [batch_size]
#      Returns:
#        Loss tensor of type float.
#      """
#      # Calculate the average cross entropy loss across the batch.
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits, labels=labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')
  
### 
Example #2
Source File: cifar10_eval.py    From ml with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default():
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    graph_def = tf.get_default_graph().as_graph_def()
    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir,
                                            graph_def=graph_def)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #3
Source File: cifar10_eval.py    From g-tensorflow-models with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #4
Source File: cifar10_eval.py    From HumanRecognition with MIT License 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #5
Source File: cifar10_eval.py    From TensorFlow-HelloWorld with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #6
Source File: cifar10_eval.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #7
Source File: cifar10_eval.py    From object_detection_kitti with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #8
Source File: cifar10_eval.py    From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    images, labels = cifar10.inputs(eval_data=FLAGS.eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    logits = tf.cast(logits, "float32")
    labels = tf.cast(labels, "int32")

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #9
Source File: cifar10_eval.py    From hands-detection with MIT License 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #10
Source File: cifar10_eval.py    From keras_experiments with The Unlicense 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #11
Source File: cifar10_eval.py    From tf-variational-dropout with GNU General Public License v3.0 5 votes vote down vote up
def evaluate(eval_dir):
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)
    phase = tf.Variable(False, name='is_train', dtype=bool, trainable=False)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    if not FLAGS.vanilla:
      logits = cifar10.inference(images, phase, vd.conv2d)
    else:
      logits = cifar10.inference(images, phase, None)


    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #12
Source File: cifar10_eval.py    From hops-tensorflow with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #13
Source File: cifar10_eval.py    From Gun-Detector with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #14
Source File: cifar10_eval.py    From PaddlePaddle_code with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #15
Source File: cifar10_eval.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #16
Source File: cifar10_eval.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs) 
Example #17
Source File: test.py    From vat_tf with MIT License 4 votes vote down vote up
def main(_):
    with tf.Graph().as_default() as g:
        with tf.device("/cpu:0"):
            images_eval_train, _ = inputs(batch_size=FLAGS.finetune_batch_size,
                                          validation=FLAGS.validation,
                                          shuffle=True)
            images_eval_test, labels_eval_test = inputs(batch_size=FLAGS.eval_batch_size,
                                                        train=False,
                                                        validation=FLAGS.validation,
                                                        shuffle=False, num_epochs=1)

        with tf.device(FLAGS.device):
            with tf.variable_scope("CNN") as scope:
                # Build graph of finetuning BN stats
                finetune_op = build_finetune_graph(images_eval_train)
                scope.reuse_variables()
                # Build eval graph
                n_correct, m = build_eval_graph(images_eval_test, labels_eval_test)

        init_op = tf.global_variables_initializer()
        saver = tf.train.Saver(tf.global_variables())
        sess = tf.Session()
        sess.run(init_op)
        ckpt = tf.train.get_checkpoint_state(FLAGS.log_dir)
        print("Checkpoints:", ckpt)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
        sess.run(tf.local_variables_initializer()) 
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(sess=sess, coord=coord)
        print("Finetuning...")
        for _ in range(FLAGS.finetune_iter):
            sess.run(finetune_op)
            
        sum_correct_examples= 0
        sum_m = 0
        try:
            while not coord.should_stop():
                _n_correct, _m = sess.run([n_correct, m])
                sum_correct_examples += _n_correct
                sum_m += _m
        except tf.errors.OutOfRangeError:
            print('Done evaluation -- epoch limit reached')
        finally:
            # When done, ask the threads to stop.
            coord.request_stop()
        print("Test: num_test_examples:{}, num_correct_examples:{}, accuracy:{}".format(
              sum_m, sum_correct_examples, sum_correct_examples/float(sum_m))) 
Example #18
Source File: test_cifar.py    From adanet with MIT License 4 votes vote down vote up
def main(_):
    with tf.Graph().as_default() as g:
        with tf.device("/cpu:0"):
            images_eval_train, _ = inputs(batch_size=FLAGS.finetune_batch_size,
                                          validation=FLAGS.validation,
                                          shuffle=True)
            images_eval_test, labels_eval_test = inputs(batch_size=FLAGS.eval_batch_size,
                                                        train=False,
                                                        validation=FLAGS.validation,
                                                        shuffle=False, num_epochs=1)

        with tf.device(FLAGS.device):
            with tf.variable_scope("CNN") as scope:
                # Build graph of finetuning BN stats
                finetune_op = build_finetune_graph(images_eval_train)
                scope.reuse_variables()
                # Build eval graph
                n_correct, m = build_eval_graph(images_eval_test, labels_eval_test)

        init_op = tf.global_variables_initializer()
        saver = tf.train.Saver(tf.global_variables())
        sess = tf.Session()
        sess.run(init_op)
        ckpt = tf.train.get_checkpoint_state(FLAGS.log_dir)
        print("Checkpoints:", ckpt)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
        sess.run(tf.local_variables_initializer()) 
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(sess=sess, coord=coord)
        print("Finetuning...")
        for _ in range(FLAGS.finetune_iter):
            sess.run(finetune_op)
            
        sum_correct_examples= 0
        sum_m = 0
        try:
            while not coord.should_stop():
                _n_correct, _m = sess.run([n_correct, m])
                sum_correct_examples += _n_correct
                sum_m += _m
        except tf.errors.OutOfRangeError:
            print('Done evaluation -- epoch limit reached')
        finally:
            # When done, ask the threads to stop.
            coord.request_stop()
        print("Test: num_test_examples:{}, num_correct_examples:{}, accuracy:{}".format(
              sum_m, sum_correct_examples, sum_correct_examples/float(sum_m)))