Python osgeo.gdal.GDT_UInt16() Examples
The following are 11
code examples of osgeo.gdal.GDT_UInt16().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
osgeo.gdal
, or try the search function
.
Example #1
Source File: slicing.py From lidar with MIT License | 6 votes |
def writeRaster(arr, out_path, template): no_data = 0 # First of all, gather some information from the template file data = gdal.Open(template) [cols, rows] = arr.shape trans = data.GetGeoTransform() proj = data.GetProjection() # nodatav = 0 #data.GetNoDataValue() # Create the file, using the information from the template file outdriver = gdal.GetDriverByName("GTiff") # http://www.gdal.org/gdal_8h.html # GDT_Byte = 1, GDT_UInt16 = 2, GDT_UInt32 = 4, GDT_Int32 = 5, GDT_Float32 = 6, outdata = outdriver.Create(str(out_path), rows, cols, 1, gdal.GDT_UInt32) # Write the array to the file, which is the original array in this example outdata.GetRasterBand(1).WriteArray(arr) # Set a no data value if required outdata.GetRasterBand(1).SetNoDataValue(no_data) # Georeference the image outdata.SetGeoTransform(trans) # Write projection information outdata.SetProjection(proj) return arr # raster to vector
Example #2
Source File: slicing.py From lidar with MIT License | 6 votes |
def polygonize(img,shp_path): # mapping between gdal type and ogr field type type_mapping = {gdal.GDT_Byte: ogr.OFTInteger, gdal.GDT_UInt16: ogr.OFTInteger, gdal.GDT_Int16: ogr.OFTInteger, gdal.GDT_UInt32: ogr.OFTInteger, gdal.GDT_Int32: ogr.OFTInteger, gdal.GDT_Float32: ogr.OFTReal, gdal.GDT_Float64: ogr.OFTReal, gdal.GDT_CInt16: ogr.OFTInteger, gdal.GDT_CInt32: ogr.OFTInteger, gdal.GDT_CFloat32: ogr.OFTReal, gdal.GDT_CFloat64: ogr.OFTReal} ds = gdal.Open(img) prj = ds.GetProjection() srcband = ds.GetRasterBand(1) dst_layername = "Shape" drv = ogr.GetDriverByName("ESRI Shapefile") dst_ds = drv.CreateDataSource(shp_path) srs = osr.SpatialReference(wkt=prj) dst_layer = dst_ds.CreateLayer(dst_layername, srs=srs) raster_field = ogr.FieldDefn('id', type_mapping[srcband.DataType]) dst_layer.CreateField(raster_field) gdal.Polygonize(srcband, srcband, dst_layer, 0, [], callback=None) del img, ds, srcband, dst_ds, dst_layer # convert images in a selected folder to shapefiles
Example #3
Source File: raster_processing.py From DsgTools with GNU General Public License v2.0 | 6 votes |
def getNumpyType(self, pixelType = gdal.GDT_Byte): ''' Translates the gdal raster type to numpy type pixelType: gdal raster type ''' if pixelType == gdal.GDT_Byte: return numpy.uint8 elif pixelType == gdal.GDT_UInt16: return numpy.uint16 elif pixelType == gdal.GDT_Int16: return numpy.int16 elif pixelType == gdal.GDT_UInt32: return numpy.uint32 elif pixelType == gdal.GDT_Int32: return numpy.int32 elif pixelType == gdal.GDT_Float32: return numpy.float32 elif pixelType == gdal.GDT_Float64: return numpy.float64
Example #4
Source File: HSV_fusion.py From DsgTools with GNU General Public License v2.0 | 6 votes |
def getNumpyType(self, pixelType = gdal.GDT_Byte): """ Translates the gdal raster type to numpy type pixelType: gdal raster type """ if pixelType == gdal.GDT_Byte: return numpy.uint8 elif pixelType == gdal.GDT_UInt16: return numpy.uint16 elif pixelType == gdal.GDT_Int16: return numpy.int16 elif pixelType == gdal.GDT_UInt32: return numpy.uint32 elif pixelType == gdal.GDT_Int32: return numpy.int32 elif pixelType == gdal.GDT_Float32: return numpy.float32 elif pixelType == gdal.GDT_Float64: return numpy.float64
Example #5
Source File: gimage.py From radiometric_normalization with Apache License 2.0 | 5 votes |
def create_ds(file_name, xsize, ysize, band_count, compress=True): options = ['PHOTOMETRIC=RGB'] if compress: options.append('COMPRESS=DEFLATE') options.append('PREDICTOR=2') datatype = gdal.GDT_UInt16 gdal_ds = gdal.GetDriverByName('GTIFF').Create( file_name, xsize, ysize, band_count, datatype, options=options) return gdal_ds
Example #6
Source File: gimage_tests.py From radiometric_normalization with Apache License 2.0 | 5 votes |
def setUp(self): self.band = numpy.array([[0, 1], [2, 3]], dtype=numpy.uint16) self.mask = numpy.array([[0, 1], [0, 1]], dtype=numpy.bool) self.metadata = {'geotransform': (-1.0, 2.0, 0.0, 1.0, 0.0, -1.0)} self.test_photometric_alpha_image = 'test_photometric_alpha_image.tif' test_ds = gdal.GetDriverByName('GTiff').Create( self.test_photometric_alpha_image, 2, 2, 4, gdal.GDT_UInt16, options=['PHOTOMETRIC=RGB', 'ALPHA=YES']) gdal_array.BandWriteArray(test_ds.GetRasterBand(1), self.band) gdal_array.BandWriteArray(test_ds.GetRasterBand(2), self.band) gdal_array.BandWriteArray(test_ds.GetRasterBand(3), self.band) gdal_array.BandWriteArray(test_ds.GetRasterBand(4), self.mask) test_ds.SetGeoTransform(self.metadata['geotransform'])
Example #7
Source File: gimage_tests.py From radiometric_normalization with Apache License 2.0 | 5 votes |
def test__save_to_ds(self): output_file = 'test_save_to_ds.tif' test_band = numpy.array([[0, 1], [2, 3]], dtype=numpy.uint16) test_gimage = gimage.GImage([test_band], self.mask, self.metadata) output_ds = gdal.GetDriverByName('GTiff').Create( output_file, 2, 2, 2, gdal.GDT_UInt16, options=['ALPHA=YES']) gimage._save_to_ds(test_gimage, output_ds, nodata=3) # Required for gdal to write to file output_ds = None test_ds = gdal.Open(output_file) saved_number_of_bands = test_ds.RasterCount self.assertEquals(saved_number_of_bands, 2) saved_band = test_ds.GetRasterBand(1).ReadAsArray() numpy.testing.assert_array_equal(saved_band, self.band) saved_nodata = test_ds.GetRasterBand(1).GetNoDataValue() self.assertEqual(saved_nodata, 3) saved_alpha = test_ds.GetRasterBand(2).ReadAsArray() numpy.testing.assert_array_equal(saved_alpha, self.mask * 255) os.unlink(output_file)
Example #8
Source File: _gdal_gdt_conv.py From buzzard with Apache License 2.0 | 5 votes |
def _str_of_gdt(gdt): return { gdal.GDT_Byte: 'GDT_Byte', gdal.GDT_Int16: 'GDT_Int16', gdal.GDT_Int32: 'GDT_Int32', gdal.GDT_UInt16: 'GDT_UInt16', gdal.GDT_UInt32: 'GDT_UInt32', gdal.GDT_Float32: 'GDT_Float32', gdal.GDT_Float64: 'GDT_Float64', gdal.GDT_CFloat32: 'GDT_CFloat32', gdal.GDT_CFloat64: 'GDT_CFloat64', gdal.GDT_CInt16: 'GDT_CInt16', gdal.GDT_CInt32: 'GDT_CInt32', }[gdt]
Example #9
Source File: filling.py From lidar with MIT License | 5 votes |
def polygonize(img,shp_path): # mapping between gdal type and ogr field type type_mapping = {gdal.GDT_Byte: ogr.OFTInteger, gdal.GDT_UInt16: ogr.OFTInteger, gdal.GDT_Int16: ogr.OFTInteger, gdal.GDT_UInt32: ogr.OFTInteger, gdal.GDT_Int32: ogr.OFTInteger, gdal.GDT_Float32: ogr.OFTReal, gdal.GDT_Float64: ogr.OFTReal, gdal.GDT_CInt16: ogr.OFTInteger, gdal.GDT_CInt32: ogr.OFTInteger, gdal.GDT_CFloat32: ogr.OFTReal, gdal.GDT_CFloat64: ogr.OFTReal} ds = gdal.Open(img) prj = ds.GetProjection() srcband = ds.GetRasterBand(1) dst_layername = "Shape" drv = ogr.GetDriverByName("ESRI Shapefile") dst_ds = drv.CreateDataSource(shp_path) srs = osr.SpatialReference(wkt=prj) dst_layer = dst_ds.CreateLayer(dst_layername, srs=srs) # raster_field = ogr.FieldDefn('id', type_mapping[srcband.DataType]) raster_field = ogr.FieldDefn('id', type_mapping[gdal.GDT_Int32]) dst_layer.CreateField(raster_field) gdal.Polygonize(srcband, srcband, dst_layer, 0, [], callback=None) del img, ds, srcband, dst_ds, dst_layer # extract sinks from dem
Example #10
Source File: classify.py From coded with MIT License | 5 votes |
def create_mask_from_vector(vector_data_path, cols, rows, geo_transform, projection, target_value=1, output_fname='', dataset_format='MEM'): """ Rasterize the given vector (wrapper for gdal.RasterizeLayer). Return a gdal.Dataset. :param vector_data_path: Path to a shapefile :param cols: Number of columns of the result :param rows: Number of rows of the result :param geo_transform: Returned value of gdal.Dataset.GetGeoTransform (coefficients for transforming between pixel/line (P,L) raster space, and projection coordinates (Xp,Yp) space. :param projection: Projection definition string (Returned by gdal.Dataset.GetProjectionRef) :param target_value: Pixel value for the pixels. Must be a valid gdal.GDT_UInt16 value. :param output_fname: If the dataset_format is GeoTIFF, this is the output file name :param dataset_format: The gdal.Dataset driver name. [default: MEM] """ driver = ogr.GetDriverByName('ESRI Shapefile') data_source = driver.Open(vector_data_path, 0) if data_source is None: report_and_exit("File read failed: %s", vector_data_path) layer = data_source.GetLayer(0) driver = gdal.GetDriverByName(dataset_format) target_ds = driver.Create(output_fname, cols, rows, 1, gdal.GDT_UInt16) target_ds.SetGeoTransform(geo_transform) target_ds.SetProjection(projection) gdal.RasterizeLayer(target_ds, [1], layer, burn_values=[target_value]) return target_ds
Example #11
Source File: update_msi.py From dfc2019 with MIT License | 5 votes |
def update_msi(input_file_name, output_file_name): img = tifffile.imread(input_file_name) rows, cols, bands = img.shape driver = gdal.GetDriverByName("GTiff") output_data = driver.Create(output_file_name, rows, cols, bands, gdal.GDT_UInt16) for band in range(0, bands): output_band = output_data.GetRasterBand(band + 1) output_band.WriteArray(img[:, :, band]) output_data.FlushCache() output_data = None # main