Python sklearn.cross_validation.cross_val_predict() Examples
The following are 8
code examples of sklearn.cross_validation.cross_val_predict().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.cross_validation
, or try the search function
.
Example #1
Source File: TermDocMatrix.py From scattertext with Apache License 2.0 | 6 votes |
def get_logistic_regression_coefs_l2(self, category, clf=RidgeClassifierCV()): ''' Computes l2-penalized logistic regression score. Parameters ---------- category : str category name to score category : str category name to score Returns ------- (coefficient array, accuracy, majority class baseline accuracy) ''' try: from sklearn.cross_validation import cross_val_predict except: from sklearn.model_selection import cross_val_predict y = self._get_mask_from_category(category) X = TfidfTransformer().fit_transform(self._X) clf.fit(X, y) y_hat = cross_val_predict(clf, X, y) acc, baseline = self._get_accuracy_and_baseline_accuracy(y, y_hat) return clf.coef_[0], acc, baseline
Example #2
Source File: TermDocMatrix.py From scattertext with Apache License 2.0 | 5 votes |
def get_logistic_regression_coefs_l1(self, category, clf=LassoCV(alphas=[0.1, 0.001], max_iter=10000, n_jobs=-1)): ''' Computes l1-penalized logistic regression score. Parameters ---------- category : str category name to score Returns ------- (coefficient array, accuracy, majority class baseline accuracy) ''' try: from sklearn.cross_validation import cross_val_predict except: from sklearn.model_selection import cross_val_predict y = self._get_mask_from_category(category) y_continuous = self._get_continuous_version_boolean_y(y) # X = TfidfTransformer().fit_transform(self._X) X = self._X clf.fit(X, y_continuous) y_hat = (cross_val_predict(clf, X, y_continuous) > 0) acc, baseline = self._get_accuracy_and_baseline_accuracy(y, y_hat) clf.fit(X, y_continuous) return clf.coef_, acc, baseline
Example #3
Source File: _test.py From ibex with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _generate_cross_val_predict_test(X, y, est, pd_est, must_match): def test(self): self.assertEqual( hasattr(est, 'predict'), hasattr(pd_est, 'predict')) if not hasattr(est, 'predict'): return pd_y_hat = pd_cross_val_predict(pd_est, X, y) self.assertTrue(isinstance(pd_y_hat, pd.Series)) self.assertTrue(pd_y_hat.index.equals(X.index)) if must_match: y_hat = cross_val_predict(est, X.as_matrix(), y.values) np.testing.assert_allclose(pd_y_hat, y_hat) return test
Example #4
Source File: GetPredictorPerf.py From ProFET with GNU General Public License v3.0 | 5 votes |
def demo_getPerf(X,y,Classifier,Classifier_label): """ Classifier_type: Sklearn model Type of classifier to use, and it's parameters Classifier_label: string Descriptive Name of the classifier. e.g "Forest" """ results = {} scores = cross_val_predict(Classifier, X, y, cv=10, n_jobs=-1) results[label] = get_scores(scores,y,Classifier_label) res_df = pd.DataFrame(results) res_df.to_csv(outputFileName+"tsv", sep='\t')
Example #5
Source File: test_cross_validation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv())
Example #6
Source File: test_cross_validation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y with ignore_warnings(category=ConvergenceWarning): predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y with ignore_warnings(category=ConvergenceWarning): predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,))
Example #7
Source File: test_cross_validation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser)
Example #8
Source File: test_cross_validation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)