Python numpy.complex64() Examples
The following are 30
code examples of numpy.complex64().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_function_base.py From lambda-packs with MIT License | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) assert_array_equal(np.cumsum(a, axis=0), tgt) tgt = np.array( [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) assert_array_equal(np.cumsum(a2, axis=0), tgt) tgt = np.array( [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) assert_array_equal(np.cumsum(a2, axis=1), tgt)
Example #2
Source File: test_function_base.py From recruit with Apache License 2.0 | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: assert_raises(ArithmeticError, np.prod, a) assert_raises(ArithmeticError, np.prod, a2, 1) else: assert_equal(a.prod(axis=0), 26400) assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype)) assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype))
Example #3
Source File: test_function_base.py From recruit with Apache License 2.0 | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) assert_array_equal(np.cumsum(a, axis=0), tgt) tgt = np.array( [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) assert_array_equal(np.cumsum(a2, axis=0), tgt) tgt = np.array( [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) assert_array_equal(np.cumsum(a2, axis=1), tgt)
Example #4
Source File: test_function_base.py From recruit with Apache License 2.0 | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: assert_raises(ArithmeticError, np.cumprod, a) assert_raises(ArithmeticError, np.cumprod, a2, 1) assert_raises(ArithmeticError, np.cumprod, a) else: assert_array_equal(np.cumprod(a, axis=-1), np.array([1, 2, 20, 220, 1320, 6600, 26400], ctype)) assert_array_equal(np.cumprod(a2, axis=0), np.array([[1, 2, 3, 4], [5, 12, 21, 36], [50, 36, 84, 180]], ctype)) assert_array_equal(np.cumprod(a2, axis=-1), np.array([[1, 2, 6, 24], [5, 30, 210, 1890], [10, 30, 120, 600]], ctype))
Example #5
Source File: misc.py From tenpy with GNU General Public License v3.0 | 6 votes |
def zero_if_close(a, tol=1.e-15): """set real and/or imaginary part to 0 if their absolute value is smaller than `tol`. Parameters ---------- a : ndarray numpy array to be rounded tol : float the threashold which values to consider as '0'. """ if a.dtype == np.complex128 or a.dtype == np.complex64: ar = np.choose(np.abs(a.real) < tol, [a.real, np.zeros(a.shape)]) ai = np.choose(np.abs(a.imag) < tol, [a.imag, np.zeros(a.shape)]) return ar + 1j * ai else: return np.choose(np.abs(a) < tol, [a, np.zeros_like(a)])
Example #6
Source File: fourier.py From lambda-packs with MIT License | 6 votes |
def _get_output_fourier(output, input): if output is None: if input.dtype.type in [numpy.complex64, numpy.complex128, numpy.float32]: output = numpy.zeros(input.shape, dtype=input.dtype) else: output = numpy.zeros(input.shape, dtype=numpy.float64) return_value = output elif type(output) is type: if output not in [numpy.complex64, numpy.complex128, numpy.float32, numpy.float64]: raise RuntimeError("output type not supported") output = numpy.zeros(input.shape, dtype=output) return_value = output else: if output.shape != input.shape: raise RuntimeError("output shape not correct") return_value = None return output, return_value
Example #7
Source File: _testutils.py From lambda-packs with MIT License | 6 votes |
def assert_no_overwrite(call, shapes, dtypes=None): """ Test that a call does not overwrite its input arguments """ if dtypes is None: dtypes = [np.float32, np.float64, np.complex64, np.complex128] for dtype in dtypes: for order in ["C", "F"]: for faker in [_id, _FakeMatrix, _FakeMatrix2]: orig_inputs = [_get_array(s, dtype) for s in shapes] inputs = [faker(x.copy(order)) for x in orig_inputs] call(*inputs) msg = "call modified inputs [%r, %r]" % (dtype, faker) for a, b in zip(inputs, orig_inputs): np.testing.assert_equal(a, b, err_msg=msg)
Example #8
Source File: test_linalg.py From recruit with Apache License 2.0 | 6 votes |
def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.float32) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray))
Example #9
Source File: test_linalg.py From recruit with Apache License 2.0 | 6 votes |
def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.eigvalsh(a) assert_(res.dtype.type is np.float64) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.eigvalsh(a) assert_(res.dtype.type is np.float32) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray))
Example #10
Source File: dtypes.py From lambda-packs with MIT License | 6 votes |
def min(self): """Returns the minimum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find minimum value of %s." % self) # there is no simple way to get the min value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).min except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).min except: raise TypeError("Cannot find minimum value of %s." % self)
Example #11
Source File: dtypes.py From lambda-packs with MIT License | 6 votes |
def max(self): """Returns the maximum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find maximum value of %s." % self) # there is no simple way to get the max value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).max except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).max except: raise TypeError("Cannot find maximum value of %s." % self)
Example #12
Source File: test_function_base.py From lambda-packs with MIT License | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: self.assertRaises(ArithmeticError, np.prod, a) self.assertRaises(ArithmeticError, np.prod, a2, 1) else: assert_equal(a.prod(axis=0), 26400) assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype)) assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype))
Example #13
Source File: test_function_base.py From lambda-packs with MIT License | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: self.assertRaises(ArithmeticError, np.cumprod, a) self.assertRaises(ArithmeticError, np.cumprod, a2, 1) self.assertRaises(ArithmeticError, np.cumprod, a) else: assert_array_equal(np.cumprod(a, axis=-1), np.array([1, 2, 20, 220, 1320, 6600, 26400], ctype)) assert_array_equal(np.cumprod(a2, axis=0), np.array([[1, 2, 3, 4], [5, 12, 21, 36], [50, 36, 84, 180]], ctype)) assert_array_equal(np.cumprod(a2, axis=-1), np.array([[1, 2, 6, 24], [5, 30, 210, 1890], [10, 30, 120, 600]], ctype))
Example #14
Source File: test_0020_scipy_gmres.py From pyscf with Apache License 2.0 | 6 votes |
def test_scipy_gmres_linop_parameter(self): """ This is a test on gmres method with a parameter-dependent linear operator """ for omega in np.linspace(-10.0, 10.0, 10): for eps in np.linspace(-10.0, 10.0, 10): linop_param = linalg.aslinearoperator(vext2veff_c(omega, eps, n)) Aparam = np.zeros((n,n), np.complex64) for i in range(n): uv = np.zeros(n, np.complex64); uv[i] = 1.0 Aparam[:,i] = linop_param.matvec(uv) x_ref = np.dot(inv(Aparam), b) x_itr,info = linalg.lgmres(linop_param, b) derr = abs(x_ref-x_itr).sum()/x_ref.size self.assertLess(derr, 1e-6)
Example #15
Source File: test_scalarmath.py From recruit with Apache License 2.0 | 6 votes |
def test_signed_zeros(self): with np.errstate(all="ignore"): for t in [np.complex64, np.complex128]: # tupled (numerator, denominator, expected) # for testing as expected == numerator/denominator data = ( (( 0.0,-1.0), ( 0.0, 1.0), (-1.0,-0.0)), (( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), (( 0.0,-1.0), (-0.0,-1.0), ( 1.0, 0.0)), (( 0.0,-1.0), (-0.0, 1.0), (-1.0, 0.0)), (( 0.0, 1.0), ( 0.0,-1.0), (-1.0, 0.0)), (( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), ((-0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), ((-0.0, 1.0), ( 0.0,-1.0), (-1.0,-0.0)) ) for cases in data: n = cases[0] d = cases[1] ex = cases[2] result = t(complex(n[0], n[1])) / t(complex(d[0], d[1])) # check real and imag parts separately to avoid comparison # in array context, which does not account for signed zeros assert_equal(result.real, ex[0]) assert_equal(result.imag, ex[1])
Example #16
Source File: test_scalarmath.py From recruit with Apache License 2.0 | 6 votes |
def test_zero_division(self): with np.errstate(all="ignore"): for t in [np.complex64, np.complex128]: a = t(0.0) b = t(1.0) assert_(np.isinf(b/a)) b = t(complex(np.inf, np.inf)) assert_(np.isinf(b/a)) b = t(complex(np.inf, np.nan)) assert_(np.isinf(b/a)) b = t(complex(np.nan, np.inf)) assert_(np.isinf(b/a)) b = t(complex(np.nan, np.nan)) assert_(np.isnan(b/a)) b = t(0.) assert_(np.isnan(b/a))
Example #17
Source File: test_function_base.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) assert_array_equal(np.cumsum(a, axis=0), tgt) tgt = np.array( [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) assert_array_equal(np.cumsum(a2, axis=0), tgt) tgt = np.array( [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) assert_array_equal(np.cumsum(a2, axis=1), tgt)
Example #18
Source File: test_function_base.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: self.assertRaises(ArithmeticError, np.prod, a) self.assertRaises(ArithmeticError, np.prod, a2, 1) else: assert_equal(a.prod(axis=0), 26400) assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype)) assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype))
Example #19
Source File: test_function_base.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: self.assertRaises(ArithmeticError, np.cumprod, a) self.assertRaises(ArithmeticError, np.cumprod, a2, 1) self.assertRaises(ArithmeticError, np.cumprod, a) else: assert_array_equal(np.cumprod(a, axis=-1), np.array([1, 2, 20, 220, 1320, 6600, 26400], ctype)) assert_array_equal(np.cumprod(a2, axis=0), np.array([[1, 2, 3, 4], [5, 12, 21, 36], [50, 36, 84, 180]], ctype)) assert_array_equal(np.cumprod(a2, axis=-1), np.array([[1, 2, 6, 24], [5, 30, 210, 1890], [10, 30, 120, 600]], ctype))
Example #20
Source File: test_random.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_shuffle(self): # Test lists, arrays (of various dtypes), and multidimensional versions # of both, c-contiguous or not: for conv in [lambda x: np.array([]), lambda x: x, lambda x: np.asarray(x).astype(np.int8), lambda x: np.asarray(x).astype(np.float32), lambda x: np.asarray(x).astype(np.complex64), lambda x: np.asarray(x).astype(object), lambda x: [(i, i) for i in x], lambda x: np.asarray([[i, i] for i in x]), lambda x: np.vstack([x, x]).T, # gh-4270 lambda x: np.asarray([(i, i) for i in x], [("a", object, 1), ("b", np.int32, 1)])]: np.random.seed(self.seed) alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) np.random.shuffle(alist) actual = alist desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3]) np.testing.assert_array_equal(actual, desired)
Example #21
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def test_branch_cuts_complex64(self): # check branch cuts and continuity on them _check_branch_cut(np.log, -0.5, 1j, 1, -1, True, np.complex64) _check_branch_cut(np.log2, -0.5, 1j, 1, -1, True, np.complex64) _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64) _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64) _check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True, np.complex64) _check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64) _check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64) _check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64) _check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64) _check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64) _check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64) # check against bogus branch cuts: assert continuity between quadrants _check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64) _check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64) _check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64) _check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64) _check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64) _check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64)
Example #22
Source File: spectral.py From audiomate with MIT License | 5 votes |
def stft_from_frames(frames, window='hann', dtype=np.complex64): """ Variation of the librosa.core.stft function, that computes the short-time-fourier-transfrom from frames instead from the signal. See http://librosa.github.io/librosa/_modules/librosa/core/spectrum.html#stft """ win_length = frames.shape[0] n_fft = win_length fft_window = filters.get_window(window, win_length, fftbins=True) # Reshape so that the window can be broadcast fft_window = fft_window.reshape((-1, 1)) # Pre-allocate the STFT matrix stft_matrix = np.empty((int(1 + n_fft // 2), frames.shape[1]), dtype=dtype, order='F') # how many columns can we fit within MAX_MEM_BLOCK? n_columns = int(util.MAX_MEM_BLOCK / (stft_matrix.shape[0] * stft_matrix.itemsize)) for bl_s in range(0, stft_matrix.shape[1], n_columns): bl_t = min(bl_s + n_columns, stft_matrix.shape[1]) # RFFT and Conjugate here to match phase from DPWE code stft_matrix[:, bl_s:bl_t] = fft.fft(fft_window * frames[:, bl_s:bl_t], axis=0)[:stft_matrix.shape[0]].conj() return stft_matrix
Example #23
Source File: svd_robust.py From tenpy with GNU General Public License v3.0 | 5 votes |
def _set_CLAPACK_callsignatures(lapack_lib): """define the call signature of the CLAPACK functions which we need. See http://www.netlib.org/lapack/explore-html/d8/d70/group__lapack.html for the (fortran) signature. In the C version, all arguments must be given as pointers of the corresponding C types. """ # Shorthand data type for the arrays. # s/d/c/z = fortran single/double/complex_single/complex_double s_arr = np.ctypeslib.ndpointer(dtype=np.float32, ndim=1) d_arr = np.ctypeslib.ndpointer(dtype=np.float64, ndim=1) c_arr = np.ctypeslib.ndpointer(dtype=np.complex64, ndim=1) z_arr = np.ctypeslib.ndpointer(dtype=np.complex128, ndim=1) s_2arr = np.ctypeslib.ndpointer(dtype=np.float32, ndim=2) d_2arr = np.ctypeslib.ndpointer(dtype=np.float64, ndim=2) c_2arr = np.ctypeslib.ndpointer(dtype=np.complex64, ndim=2) z_2arr = np.ctypeslib.ndpointer(dtype=np.complex128, ndim=2) lapack_lib.sgesvd_.argtypes = \ [POINTER(c_char), POINTER(c_char), POINTER(c_int), POINTER(c_int), s_2arr, POINTER(c_int), s_arr, s_2arr, POINTER(c_int), s_2arr, POINTER(c_int), s_arr, POINTER(c_int), POINTER(c_int)] lapack_lib.dgesvd_.argtypes = \ [POINTER(c_char), POINTER(c_char), POINTER(c_int), POINTER(c_int), d_2arr, POINTER(c_int), d_arr, d_2arr, POINTER(c_int), d_2arr, POINTER(c_int), d_arr, POINTER(c_int), POINTER(c_int)] lapack_lib.cgesvd_.argtypes = \ [POINTER(c_char), POINTER(c_char), POINTER(c_int), POINTER(c_int), c_2arr, POINTER(c_int), s_arr, c_2arr, POINTER(c_int), c_2arr, POINTER(c_int), c_arr, POINTER(c_int), s_arr, POINTER(c_int)] lapack_lib.zgesvd_.argtypes = \ [POINTER(c_char), POINTER(c_char), POINTER(c_int), POINTER(c_int), z_2arr, POINTER(c_int), d_arr, z_2arr, POINTER(c_int), z_2arr, POINTER(c_int), z_arr, POINTER(c_int), d_arr, POINTER(c_int)]
Example #24
Source File: basic.py From lambda-packs with MIT License | 5 votes |
def _raw_fftn_dispatch(x, shape, axes, overwrite_x, direction): tmp = _asfarray(x) try: work_function = _DTYPE_TO_FFTN[tmp.dtype] except KeyError: raise ValueError("type %s is not supported" % tmp.dtype) if not (istype(tmp, numpy.complex64) or istype(tmp, numpy.complex128)): overwrite_x = 1 overwrite_x = overwrite_x or _datacopied(tmp, x) return _raw_fftnd(tmp,shape,axes,direction,overwrite_x,work_function)
Example #25
Source File: test_DataFrameModel.py From pandas-qt with MIT License | 5 votes |
def test_unhandledDtype(self, model, index): dataFrame = pandas.DataFrame([92.289+151.96j], columns=['A']) dataFrame['A'] = dataFrame['A'].astype(numpy.complex64) model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame assert index.isValid() model.enableEditing(True) with pytest.raises(TypeError) as excinfo: model.setData(index, numpy.complex64(92+151j)) assert "unhandled data type" in unicode(excinfo.value)
Example #26
Source File: test_DataFrameModel.py From pandas-qt with MIT License | 5 votes |
def test_unhandledDtype(self, model, index): dataFrame = pandas.DataFrame([92.289+151.96j], columns=['A']) dataFrame['A'] = dataFrame['A'].astype(numpy.complex64) model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame assert index.isValid() assert model.data(index) == None # with pytest.raises(TypeError) as excinfo: # model.data(index) # assert "unhandled data type" in unicode(excinfo.value)
Example #27
Source File: sar_data.py From SAR-change-detection with MIT License | 5 votes |
def load(self, path, code, shape, header): "Load SARData object for a given month code" self.shape = shape self.size = shape[0]*shape[1] extension = ".emi" if header else "" self.hhhh = read_sar_file(path + '/{}/{}hhhh{}'.format(code, code, extension), np.float32, header) self.hhhv = read_sar_file(path + '/{}/{}hhhv{}'.format(code, code, extension), np.complex64, header) self.hvhv = read_sar_file(path + '/{}/{}hvhv{}'.format(code, code, extension), np.float32, header) self.hhvv = read_sar_file(path + '/{}/{}hhvv{}'.format(code, code, extension), np.complex64, header) self.hvvv = read_sar_file(path + '/{}/{}hvvv{}'.format(code, code, extension), np.complex64, header) self.vvvv = read_sar_file(path + '/{}/{}vvvv{}'.format(code, code, extension), np.float32, header) return self
Example #28
Source File: test_constructors.py From recruit with Apache License 2.0 | 5 votes |
def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype
Example #29
Source File: test_scalarmath.py From recruit with Apache License 2.0 | 5 votes |
def test_branches(self): with np.errstate(all="ignore"): for t in [np.complex64, np.complex128]: # tupled (numerator, denominator, expected) # for testing as expected == numerator/denominator data = list() # trigger branch: real(fabs(denom)) > imag(fabs(denom)) # followed by else condition as neither are == 0 data.append((( 2.0, 1.0), ( 2.0, 1.0), (1.0, 0.0))) # trigger branch: real(fabs(denom)) > imag(fabs(denom)) # followed by if condition as both are == 0 # is performed in test_zero_division(), so this is skipped # trigger else if branch: real(fabs(denom)) < imag(fabs(denom)) data.append((( 1.0, 2.0), ( 1.0, 2.0), (1.0, 0.0))) for cases in data: n = cases[0] d = cases[1] ex = cases[2] result = t(complex(n[0], n[1])) / t(complex(d[0], d[1])) # check real and imag parts separately to avoid comparison # in array context, which does not account for signed zeros assert_equal(result.real, ex[0]) assert_equal(result.imag, ex[1])
Example #30
Source File: test_scalarmath.py From recruit with Apache License 2.0 | 5 votes |
def test_modular_power(self): # modular power is not implemented, so ensure it errors a = 5 b = 4 c = 10 expected = pow(a, b, c) # noqa: F841 for t in (np.int32, np.float32, np.complex64): # note that 3-operand power only dispatches on the first argument assert_raises(TypeError, operator.pow, t(a), b, c) assert_raises(TypeError, operator.pow, np.array(t(a)), b, c)