Python numpy.random.random_integers() Examples
The following are 8
code examples of numpy.random.random_integers().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: Generator.py From ID2T with MIT License | 6 votes |
def add_padding(packet, bytes_padding:int = 0, user_padding:bool=True, rnd:bool = False): """ Adds padding to a packet with the given amount of bytes, but a maximum of 100 bytes, if called by the user. :param packet: the packet that will be extended with the additional payload :param bytes_padding: the amount of bytes that will be appended to the packet. Capped to 100, if called by the user. :param user_padding: true, if the function add_padding by the user and not within the code :param rnd: adds a random padding between 0 and bytes_padding, if true :return: the initial packet, extended with the wanted amount of bytes of padding """ if user_padding == True and bytes_padding > 100: bytes_padding = 100 if rnd is True: r = int(round(bytes_padding / 4)) # sets bytes_padding to any number between 0 and bytes_padding = random2.random_integers(0, r) * 4 # bytes_padding, that's dividable by 4 payload = generate_payload(bytes_padding) packet[Raw].load += Raw(load=payload).load return packet
Example #2
Source File: Simulator.py From cortana-intelligence-inventory-optimization with MIT License | 6 votes |
def __define_suppliers(self): self.hierarchy['Suppliers'] = [] for SupplierID in range(1, n_suppliers + 1): supplier_dict = {} supplier_dict['SupplierID'] = str(SupplierID) supplier_dict['SupplierName'] = 'Supplier ' + supplier_dict['SupplierID'] supplier_dict['ShippingCost'] = uniform(min_shipping_cost, max_shipping_cost) supplier_dict['MinShippingVolume'] = uniform(min_min_shipping_volume, max_min_shipping_volume) supplier_dict['MaxShippingVolume'] = supplier_dict['MinShippingVolume'] + uniform(min_shipping_volume_interval, max_shipping_volume_interval) supplier_dict['FixedOrderSize'] = int(random_integers(min_fixed_order_size, max_fixed_order_size)) supplier_dict['PurchaseCostBudget'] = uniform(min_purchase_cost_budget, max_purchase_cost_budget) self.hierarchy['Suppliers'].append(supplier_dict) # definitions of storage
Example #3
Source File: generate_missing_data.py From Generative-ConvACs with MIT License | 5 votes |
def corrupt_image(img, MAR_prob=0, min_rects=0, max_rects=0, min_width=0, max_width=0, apply_to_all_channels=False): def generate_channel_mask(): mask = np.zeros(img.shape[0:2], dtype=np.bool) if MAR_prob > 0: mask[(random_sample(mask.shape) < MAR_prob)] = True if max_rects > 0 and max_width > 0: h, w = mask.shape num_rects = random_integers(min_rects, max_rects) for i in range(num_rects): px1 = random_integers(0, w - min(max(min_width, 1), w)) py1 = random_integers(0, h - min(max(min_width, 1), h)) px2 = px1 + min_width + random_integers(0, max(min(w - px1 - min_width, max_width - min_width), 0)); py2 = py1 + min_width + random_integers(0, max(min(h - py1 - min_width, max_width - min_width), 0)); if px1 <= px2 and py1 <= py2: mask[py1:py2, px1:px2] = True else: # One of the sides has length 0, so we should remove any pixels4 pass return mask new_img = img.copy() channels = 1 if len(new_img.shape) == 2 else new_img.shape[-1] global_mask = np.zeros(img.shape, dtype=np.bool) if channels == 1 or apply_to_all_channels: mask = generate_channel_mask() if channels == 1: global_mask[:, :] = mask else: for i in xrange(channels): global_mask[:, :, i] = mask else: global_mask = np.zeros(img.shape, dtype=np.bool) for i in xrange(channels): global_mask[:,:,i] = generate_channel_mask() new_img[global_mask] = 0 return (new_img, 1.0 * global_mask) # Process command line inputs
Example #4
Source File: Simulator.py From cortana-intelligence-inventory-optimization with MIT License | 5 votes |
def __define_brands_products(self): # definition of brands and products self.hierarchy['Brands'] = [] for BrandID in range(1, n_brands + 1): brand_dict = {} brand_dict['BrandID'] = str(BrandID) brand_dict['BrandName'] = 'Brand ' + brand_dict['BrandID'] brand_dict['Desirability'] = uniform(min_brand_desirability, max_brand_desirability) # definition of products of the given brand in the given store department brand_dict['Products'] = [] # For the time being, only one product per brand. This will change in the future product_dict = {} product_dict['ProductID'] = brand_dict['BrandID'] + '_1' product_dict['ProductName'] = brand_dict['BrandName'] + ' Product ' + product_dict['ProductID'] product_dict['ProductVolume'] = uniform(min_product_volume, max_product_volume) product_dict['MSRP'] = 0 # will be updated later on, based on the purchase cost if BrandID <= n_brands/2 or choice([-1,1]) == 1: # first half of the brands have perishable products # some brands in the second half also have perishable products product_dict['ShelfLife'] = str(random_integers(min_shelf_life, max_shelf_life)) + ' days' else: product_dict['ShelfLife'] = '10000 days' brand_dict['Products'].append(product_dict) self.hierarchy['Brands'].append(brand_dict) # definitions of suppliers
Example #5
Source File: Simulator.py From cortana-intelligence-inventory-optimization with MIT License | 5 votes |
def __store_product_storage(self): product_storage = [] for StorageID in range(1, n_storage_spaces + 1): start_brand = int((StorageID - 1) * n_brands / n_storage_spaces) end_brand = int(StorageID * n_brands / n_storage_spaces) storage_dict = {} storage_dict['StorageID'] = StorageID storage_dict['Products'] = [] # place products in a given storage space for BrandID in range(start_brand, end_brand): for product in self.hierarchy['Brands'][BrandID]['Products']: product_storage_dict = {} product_storage_dict['ProductID'] = product['ProductID'] product_storage_dict['StorageCost'] = uniform(min_storage_cost, max_storage_cost) product_storage_dict['MissedSaleCost'] = uniform(min_missed_sale_cost, max_missed_sale_cost) product_storage_dict['MinInventorySize'] = int(random_integers(min_min_inventory_size, max_min_inventory_size)) product_storage_dict['MaxInventorySize'] = product_storage_dict['MinInventorySize'] + int(random_integers(min_inventory_size_interval, max_inventory_size_interval)) storage_dict['Products'].append(product_storage_dict) product_storage.append(storage_dict) return product_storage # definitions of suppliers of products
Example #6
Source File: Simulator.py From cortana-intelligence-inventory-optimization with MIT License | 5 votes |
def __store_product_supplier(self): product_supplier = [] for SupplierID in range(1, n_suppliers + 1): start_brand = int((SupplierID - 1) * n_brands / n_suppliers) end_brand = int(SupplierID * n_brands / n_suppliers) supplier_dict = {} supplier_dict['SupplierID'] = SupplierID supplier_dict['Products'] = [] # place products in a given storage space for BrandID in range(start_brand, end_brand): for product in self.hierarchy['Brands'][BrandID]['Products']: product_supplier_dict = {} product_supplier_dict['ProductID'] = product['ProductID'] product_supplier_dict['LeadTime'] = int(random_integers(min_lead_time, max_lead_time)) product_supplier_dict['LeadTimeConfidenceInterval'] = int(random_integers(min_lead_time_conf_interval, max_lead_time_conf_interval)) product_supplier_dict['MinOrderQuantity'] = int(random_integers(min_min_order_quantity, max_min_order_quantity)) product_supplier_dict['MaxOrderQuantity'] = product_supplier_dict['MinOrderQuantity'] + int(random_integers(min_order_quantity_interval, max_order_quantity_interval)) product_supplier_dict['QuantityMultiplier'] = int(random_integers(min_quantity_multiplier, max_quantity_multiplier)) product_supplier_dict['Cost'] = uniform(min_purchase_cost, max_purchase_cost) product_supplier_dict['BackorderCost'] = product_supplier_dict['Cost'] * uniform(min_backorder_multiplier, max_backorder_multiplier) product_supplier_dict['PurchaseCostBudget'] = product_supplier_dict['Cost'] * uniform(min_purchase_cost_budget_multiplier, max_purchase_cost_budget_multiplier) product_supplier_dict['ShippingCost'] = product_supplier_dict['Cost'] * uniform(min_shipping_multiplier, max_shipping_multiplier) product_supplier_dict['ShipmentFreq'] = str(random_integers(min_ordering_frequency, max_ordering_frequency)) + " days" product_supplier_dict['ServiceLevel'] = uniform(min_service_level, max_service_level) supplier_dict['Products'].append(product_supplier_dict) product_supplier.append(supplier_dict) return product_supplier # Create static data: definitions of stores, storage spaces, products and suppliers
Example #7
Source File: Simulator.py From cortana-intelligence-inventory-optimization with MIT License | 5 votes |
def __compute_arrivals(self): min_order = max(1,self.min_order_quantity) if self.max_order_quantity < 0: max_order = 10000 else: max_order = min(10000, self.max_order_quantity) order_arrival = int(random_integers(min_order, max_order)) if self.quantity_multiplier > 0: return max(min_order, order_arrival - (order_arrival % self.quantity_multiplier)) else: return order_arrival
Example #8
Source File: ase_mc_npt.py From ASE_ANI with MIT License | 4 votes |
def step(self): self.mcbar_attempts += 1 # Get energy, volume for current system configuration E0 = self.atoms.get_potential_energy() V0 = self.atoms.get_volume() cell0 = self.atoms.get_cell() dV = np.zeros(3) # Random change to fractional unit cell volume in range (-0.5*dV_max,0.5*dV_max) if self.iso: dV[:] = (rand.random() - 0.5) * self.dV_max else: dim = rand.random_integers(0,2) dV[dim] = (rand.random() - 0.5) * self.dV_max rmu = (1. + dV) ** (1./3.) # Is this correct for non-rectangular cells? cell = cell0.copy() cell[0] *= rmu[0] cell[1] *= rmu[1] cell[2] *= rmu[2] # Scale system to new unit cell and get new energy, volume self.atoms.set_cell(cell,scale_atoms=True) E = self.atoms.get_potential_energy() V = self.atoms.get_volume() pv_work = self.pres * (V - V0) * PCONV mc_term = np.exp((E - E0 + pv_work) * self.beta + self.natoms * np.log(rmu[0]*rmu[1]*rmu[2])) mc_check = rand.random() # Monte Carlo condition check if mc_check < mc_term: self.mcbar_successes += 1 else: # On failure, revert the system to previous volume self.atoms.set_cell(cell0,scale_atoms=True) # Check if we are succeeding too often or not often enough, and change dV_max if so if self.mcbar_attempts % self.dV_interval == 0: if self.mcbar_successes >= 0.75 * self.mcbar_attempts: print("MC BAR INCREASE DVMAX",self.mcbar_attempts,self.mcbar_successes) self.dV_max *= self.dV_scale self.mcbar_attempts = 0 self.mcbar_successes = 0 elif self.mcbar_successes <= 0.25 * self.mcbar_attempts: print("MC BAR DECREASE DVMAX:",self.mcbar_attempts,self.mcbar_successes) self.dV_max /= self.dV_scale self.mcbar_attempts = 0 self.mcbar_successes = 0