Python numpy.random.standard_normal() Examples
The following are 16
code examples of numpy.random.standard_normal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: step_algorithms.py From firefly-monte-carlo with MIT License | 6 votes |
def step(self, th, z): s = self.stepsize randstep = npr.standard_normal(th.shape) th_new = th + 0.5*s**2*self.D_prob(th,z) + randstep*s # bonus for probability difference. Using cache-friendly order diff_probs = -self.prob(th, z)+self.prob(th_new, z) # penalty for having asymmetric proposals: randstep_back = (th - (th_new + 0.5*s**2*self.D_prob(th_new,z)))/s diff_proposal = 0.5*np.sum(randstep_back**2) - 0.5*np.sum(randstep**2) # M-H accept/reject: if np.log(npr.rand()) < diff_probs - diff_proposal: self.num_rejects = 0 return th_new else: self.num_rejects = 1 return th
Example #2
Source File: recipe-578867.py From code with MIT License | 6 votes |
def initialise(self, context): self.r0 = 0.05 # current UK funding rate self.theta = 0.10 # 1 % long term interest rate self.k = 0.3 self.beta = 0.03 ## simulate short rate paths self.n = 1000 # MC simulation trials self.T = 24. # total time self.m = 100 # subintervals self.dt = self.T/self.m # difference in time each subinterval self.r = np.zeros(shape=(self.n, self.m), dtype=float) # matrix to hold short rate paths # Tell the engine where to associate the data to security. context['My Simple Model'] = Simulation(self.n, self.m, standard_normal) self.fig = plt.figure() self.ax = self.fig.add_subplot(111) self.ax.autoscale_view(True,True,True)
Example #3
Source File: test_scale.py From vnpy_crypto with MIT License | 5 votes |
def setup_class(cls): np.random.seed(54321) cls.X = standard_normal((40,10))
Example #4
Source File: test_scale.py From vnpy_crypto with MIT License | 5 votes |
def setup_class(cls): np.random.seed(54321) cls.X = standard_normal((40,10,30))
Example #5
Source File: test_scale.py From vnpy_crypto with MIT License | 5 votes |
def setup_class(cls): np.random.seed(54321) cls.X = standard_normal((40,10))
Example #6
Source File: test_scale.py From vnpy_crypto with MIT License | 5 votes |
def setup_class(cls): np.random.seed(54321) cls.X = standard_normal((40,10,30)) cls.h = scale.Huber(maxiter=1000, tol=1.0e-05)
Example #7
Source File: test_contrast.py From vnpy_crypto with MIT License | 5 votes |
def setup_class(cls): R.seed(54321) cls.X = R.standard_normal((40,10))
Example #8
Source File: test_formula.py From vnpy_crypto with MIT License | 5 votes |
def setup(self): self.X = R.standard_normal((40,10)) self.namespace = {} self.terms = [] for i in range(10): name = '%s' % string.ascii_uppercase[i] self.namespace[name] = self.X[:,i] self.terms.append(formula.Term(name)) self.formula = self.terms[0] for i in range(1, 10): self.formula += self.terms[i] self.formula.namespace = self.namespace
Example #9
Source File: test_formula.py From vnpy_crypto with MIT License | 5 votes |
def test_contrast3(self): X = self.formula.design() P = np.dot(X, L.pinv(X)) dummy = formula.Term('noise') resid = np.identity(40) - P self.namespace['noise'] = np.transpose(np.dot(resid, R.standard_normal((40,5)))) terms = dummy + self.terms[2] terms.namespace = self.formula.namespace c = contrast.Contrast(terms, self.formula) assert_equal(c.matrix.shape, (10,))
Example #10
Source File: test_tools.py From vnpy_crypto with MIT License | 5 votes |
def test_extendedpinv(self): X = standard_normal((40, 10)) np_inv = np.linalg.pinv(X) np_sing_vals = np.linalg.svd(X, 0, 0) sm_inv, sing_vals = pinv_extended(X) assert_almost_equal(np_inv, sm_inv) assert_almost_equal(np_sing_vals, sing_vals)
Example #11
Source File: test_tools.py From vnpy_crypto with MIT License | 5 votes |
def test_extendedpinv_singular(self): X = standard_normal((40, 10)) X[:, 5] = X[:, 1] + X[:, 3] np_inv = np.linalg.pinv(X) np_sing_vals = np.linalg.svd(X, 0, 0) sm_inv, sing_vals = pinv_extended(X) assert_almost_equal(np_inv, sm_inv) assert_almost_equal(np_sing_vals, sing_vals)
Example #12
Source File: test_tools.py From vnpy_crypto with MIT License | 5 votes |
def test_fullrank(self): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") X = standard_normal((40,10)) X[:,0] = X[:,1] + X[:,2] Y = tools.fullrank(X) assert_equal(Y.shape, (40,9)) X[:,5] = X[:,3] + X[:,4] Y = tools.fullrank(X) assert_equal(Y.shape, (40,8)) warnings.simplefilter("ignore")
Example #13
Source File: step_algorithms.py From firefly-monte-carlo with MIT License | 5 votes |
def step(self, th, z): th_new = th + npr.standard_normal(th.shape)*self.stepsize # Cache friendly order: evaluate old value first if np.log(npr.rand()) < - self.prob(th, z) + self.prob(th_new, z) : self.num_rejects = 0 return th_new else: self.num_rejects = 1 return th
Example #14
Source File: test_fft1d.py From mkl_fft with BSD 3-Clause "New" or "Revised" License | 5 votes |
def setUp(self): rnd.seed(1234567) self.xd1 = rnd.standard_normal(128) self.xf1 = self.xd1.astype(np.float32) self.xz1 = rnd.standard_normal((128,2)).view(dtype=np.complex128).squeeze() self.xc1 = self.xz1.astype(np.complex64)
Example #15
Source File: test_fft1d.py From mkl_fft with BSD 3-Clause "New" or "Revised" License | 5 votes |
def setUp(self): rnd.seed(1234567) self.ad2 = rnd.standard_normal((4, 3)) self.af2 = self.ad2.astype(np.float32) self.az2 = np.dot( rnd.standard_normal((17, 15, 2)), np.array([1.0 + 0.0j, 0.0 + 1.0j], dtype=np.complex128) ) self.ac2 = self.az2.astype(np.complex64) self.mat = np.matrix(self.az2) self.xd1 = rnd.standard_normal(128)
Example #16
Source File: test_fft1d.py From mkl_fft with BSD 3-Clause "New" or "Revised" License | 5 votes |
def setUp(self): rnd.seed(1234567) self.ad3 = rnd.standard_normal((7, 11, 19)) self.af3 = self.ad3.astype(np.float32) self.az3 = np.dot( rnd.standard_normal((17, 13, 15, 2)), np.array([1.0 + 0.0j, 0.0 + 1.0j], dtype=np.complex128) ) self.ac3 = self.az3.astype(np.complex64)