Python tensorflow.contrib.seq2seq.dynamic_decode() Examples
The following are 15
code examples of tensorflow.contrib.seq2seq.dynamic_decode().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.seq2seq
, or try the search function
.
Example #1
Source File: seq2seq_decoder_estimator.py From icecaps with MIT License | 6 votes |
def build_train_decoder(self): with tf.name_scope('train_decoder'): training_helper = TrainingHelper(inputs=self.inputs_dense, sequence_length=self.inputs_length, time_major=False, name='training_helper') with tf.name_scope('basic_decoder'): training_decoder = BasicDecoder(cell=self.cell, helper=training_helper, initial_state=self.initial_state, output_layer=self.output_layer) with tf.name_scope('dynamic_decode'): (outputs, self.last_state, self.outputs_length) = (seq2seq.dynamic_decode( decoder=training_decoder, output_time_major=False, impute_finished=True, maximum_iterations=self.inputs_max_length)) self.logits = tf.identity(outputs.rnn_output) self.log_probs = tf.nn.log_softmax(self.logits) self.gs_hypotheses = tf.argmax(self.log_probs, -1)
Example #2
Source File: seq2seq.py From retrosynthesis_planner with GNU General Public License v3.0 | 5 votes |
def _make_predict(self, decoder_cell, decoder_initial_state): # Access embeddings directly with tf.variable_scope('embed', reuse=True): embeddings = tf.get_variable('embeddings') # Assume 0 is the START token start_tokens = tf.zeros((self.batch_size,), dtype=tf.int32) # For predictions, we use beam search to return multiple results with tf.variable_scope('decode', reuse=True): # Project to correct dimensions out_proj = tf.layers.Dense(self.vocab_size, name='output_proj') embeddings = tf.layers.dense(embeddings, self.hidden_size, name='input_proj') decoder = seq2seq.BeamSearchDecoder( cell=decoder_cell, embedding=embeddings, start_tokens=start_tokens, end_token=END, initial_state=decoder_initial_state, beam_width=self.beam_width, output_layer=out_proj ) final_outputs, final_state, final_sequence_lengths = seq2seq.dynamic_decode( decoder=decoder, impute_finished=False, maximum_iterations=self.max_decode_iter) # Swap axes for an order that makes more sense (to me) # such that we have [batch_size, beam_width, T], i.e. # each row is a output sequence return tf.transpose(final_outputs.predicted_ids, [0,2,1])
Example #3
Source File: lm.py From avsr-tf1 with GNU General Public License v3.0 | 5 votes |
def _build_decoder_train(self): self._decoder_train_inputs = tf.nn.embedding_lookup(self._embedding_matrix, self._labels_padded_GO) if self._mode == 'train': sampler = seq2seq.ScheduledEmbeddingTrainingHelper( inputs=self._decoder_train_inputs, sequence_length=self._labels_length, embedding=self._embedding_matrix, sampling_probability=self._sampling_probability_outputs, ) else: sampler = seq2seq.TrainingHelper( inputs=self._decoder_train_inputs, sequence_length=self._labels_length, ) cells = self._decoder_cells decoder_train = seq2seq.BasicDecoder( cell=cells, helper=sampler, initial_state=self._decoder_initial_state, output_layer=self._dense_layer, ) outputs, _, _ = seq2seq.dynamic_decode( decoder_train, output_time_major=False, impute_finished=True, swap_memory=False, ) logits = outputs.rnn_output self.decoder_train_outputs = logits self.average_log_likelihoods = self._compute_likelihood(logits) print('')
Example #4
Source File: agreement.py From language with Apache License 2.0 | 5 votes |
def get_decode_func(self, embeddings, inputs, inputs_length, hiddens, hiddens_length, enc_state, mode=None, decoder_hparams=None, impute_finished=False, decoder_iterations=None): """Return a closure for decoding.""" def decode_func(): """A closure that builds decoder outputs.""" dec_outputs, _, dec_lengths = contrib_seq2seq.dynamic_decode( decoder=self.decoder( embeddings=embeddings, inputs=inputs, inputs_length=inputs_length, hiddens=hiddens, hiddens_length=hiddens_length, enc_state=enc_state, mode=mode, hparams=self._hparams, decoder_hparams=decoder_hparams, reuse=tf.AUTO_REUSE), impute_finished=impute_finished, maximum_iterations=decoder_iterations) return { "rnn_output": dec_outputs.rnn_output, "sample_id": dec_outputs.sample_id, "length": dec_lengths} return decode_func
Example #5
Source File: basic.py From language with Apache License 2.0 | 5 votes |
def body(self, features): """Process features and produce outputs.""" # Preprocess features. inputs, inputs_length, targets, targets_length = self._preprocess(features) # Encode. encoder = encoders.get(self._hparams.encoder_type) enc_outputs = encoder( inputs=inputs, inputs_length=inputs_length, mode=self._hparams.mode, hparams=self._hparams) # Get target embeddings. target_modality = self._problem_hparams.modality["targets"] target_modality_scope = self._variable_scopes[target_modality.name] target_embeddings = model_utils.get_embeddings( modality=target_modality, outer_scope=target_modality_scope, inner_scope="shared") # Decode. decoder = decoders.get(self._hparams.decoder_type) decoder = decoder( embeddings=target_embeddings, inputs=targets, inputs_length=targets_length, hiddens=enc_outputs.outputs, hiddens_length=inputs_length, enc_state=enc_outputs.final_state, mode=self._hparams.mode, hparams=self._hparams) dec_outputs, _, _ = contrib_seq2seq.dynamic_decode(decoder=decoder) return tf.expand_dims(dec_outputs.rnn_output, axis=2) # ------------------------------------------------------------------------------ # Hparams # ------------------------------------------------------------------------------
Example #6
Source File: seq2seq_decoder_estimator.py From icecaps with MIT License | 5 votes |
def build_rt_decoder(self): self.build_embeddings() start_tokens_sparse = tf.ones(shape=[self.batch_size], dtype=tf.int32) * self.vocab.start_token_id with tf.name_scope('beamsearch_decoder'): rt_decoder = BeamSearchDecoder(cell=self.cell, embedding=self.embed_sparse_to_dense, start_tokens=start_tokens_sparse, end_token=self.vocab.end_token_id, initial_state=self.initial_state, beam_width=self.hparams.beam_width, output_layer=self.output_layer, skip_tokens_decoding=self.vocab.skip_tokens, shrink_vocab=self.hparams.shrink_vocab) (hypotheses, input_query_ids, scores) = dynamic_decode( decoder=rt_decoder, output_time_major=False, maximum_iterations=self.hparams.max_length, repetition=self.hparams.repetition_penalty) sort_ids = tf.argsort( scores, direction="DESCENDING", stable=True, axis=0) scores = tf.gather_nd(scores, sort_ids) hypotheses = tf.gather_nd(hypotheses, sort_ids) input_query_ids = tf.gather_nd(input_query_ids, sort_ids) sort_ids = tf.argsort( input_query_ids, direction="ASCENDING", stable=True, axis=0) scores = tf.gather_nd(scores, sort_ids) hypotheses = tf.gather_nd(hypotheses, sort_ids) input_query_ids = tf.gather_nd(input_query_ids, sort_ids) input_queries = tf.gather_nd(tf.convert_to_tensor( self.features["original_inputs"]), input_query_ids) self.rt_hypotheses = tf.identity(hypotheses) self.inputs_pred = tf.identity(input_queries) self.scores = tf.identity(scores)
Example #7
Source File: seq2seq_decoder_estimator.py From icecaps with MIT License | 5 votes |
def build_mmi_decoder(self): with tf.name_scope('mmi_scorer'): training_helper = TrainingHelper(inputs=self.inputs_dense, sequence_length=self.inputs_length, time_major=False, name='mmi_training_helper') with tf.name_scope('mmi_basic_decoder'): training_decoder = MMIDecoder(cell=self.cell, helper=training_helper, initial_state=self.initial_state, output_layer=self.output_layer) with tf.name_scope('mmi_dynamic_decoder'): (outputs, self.last_state, self.outputs_length) = seq2seq.dynamic_decode( decoder=training_decoder, output_time_major=False, impute_finished=True, maximum_iterations=self.inputs_max_length) self.scores_raw = tf.identity( tf.transpose(outputs.scores, [1, 2, 0])) targets = self.features["targets"] targets = tf.cast(targets, dtype=tf.int32) target_len = tf.cast(tf.count_nonzero( targets - self.vocab.end_token_id, -1), dtype=tf.int32) max_target_len = tf.reduce_max(target_len) pruned_targets = tf.slice(targets, [0, 0], [-1, max_target_len]) index = (tf.range(0, max_target_len, 1)) * \ tf.ones(shape=[self.batch_size, 1], dtype=tf.int32) row_no = tf.transpose(tf.range( 0, self.batch_size, 1) * tf.ones(shape=(max_target_len, 1), dtype=tf.int32)) indices = tf.stack([index, pruned_targets, row_no], axis=2) # Retrieve scores corresponding to indices batch_scores = tf.gather_nd(self.scores_raw, indices) self.mmi_scores = tf.reduce_sum(batch_scores, axis=1)
Example #8
Source File: seq2seq.py From retrosynthesis_planner with GNU General Public License v3.0 | 4 votes |
def _make_train(self, decoder_cell, decoder_initial_state): # Assume 0 is the START token start_tokens = tf.zeros((self.batch_size,), dtype=tf.int32) y = tf.concat([tf.expand_dims(start_tokens, 1), self.y], 1) output_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(y, 1)), 1) # Reuse encoding embeddings inputs = layers.embed_sequence( y, vocab_size=self.vocab_size, embed_dim=self.embed_dim, scope='embed', reuse=True) # Prepare the decoder with the attention cell with tf.variable_scope('decode'): # Project to correct dimensions out_proj = tf.layers.Dense(self.vocab_size, name='output_proj') inputs = tf.layers.dense(inputs, self.hidden_size, name='input_proj') helper = seq2seq.TrainingHelper(inputs, output_lengths) decoder = seq2seq.BasicDecoder( cell=decoder_cell, helper=helper, initial_state=decoder_initial_state, output_layer=out_proj) max_len = tf.reduce_max(output_lengths) final_outputs, final_state, final_sequence_lengths = seq2seq.dynamic_decode( decoder=decoder, impute_finished=True, maximum_iterations=max_len) logits = final_outputs.rnn_output # Set valid timesteps to 1 and padded steps to 0, # so we only look at the actual sequence without the padding mask = tf.sequence_mask(output_lengths, maxlen=max_len, dtype=tf.float32) # Prioritize examples that the model was wrong on, # by setting weight=1 to any example where the prediction was not 1, # i.e. incorrect # weights = tf.to_float(tf.not_equal(y[:, :-1], 1)) # Training and loss ops, # with gradient clipping (see [4]) loss_op = seq2seq.sequence_loss(logits, self.y, weights=mask) optimizer = tf.train.AdamOptimizer(self.learning_rate) gradients, variables = zip(*optimizer.compute_gradients(loss_op)) gradients, _ = tf.clip_by_global_norm(gradients, self.max_grad_norm) train_op = optimizer.apply_gradients(zip(gradients, variables)) # Compute accuracy # Use the mask from before so we only compare # the relevant sequence lengths for each example pred = tf.argmax(logits, axis=2, output_type=tf.int32) pred = tf.boolean_mask(pred, mask) true = tf.boolean_mask(self.y, mask) accs = tf.cast(tf.equal(pred, true), tf.float32) accuracy_op = tf.reduce_mean(accs, name='acc') return loss_op, train_op, accuracy_op
Example #9
Source File: decoder_unimodal.py From avsr-tf1 with GNU General Public License v3.0 | 4 votes |
def _build_decoder_test_greedy(self): r""" Builds the greedy test decoder, which feeds the most likely decoded symbol as input for the next timestep """ self._helper_greedy = seq2seq.GreedyEmbeddingHelper( embedding=self._embedding_matrix, start_tokens=tf.tile([self._GO_ID], [self._batch_size]), end_token=self._EOS_ID) if self._hparams.enable_attention is True: cells, initial_state = add_attention( cells=self._decoder_cells, attention_types=self._hparams.attention_type[1], num_units=self._hparams.decoder_units_per_layer[-1], memory=self._encoder_memory, memory_len=self._encoder_features_len, beam_search=False, batch_size=self._batch_size, initial_state=self._decoder_initial_state, mode=self._mode, dtype=self._hparams.dtype, fusion_type='linear_fusion', write_attention_alignment=self._hparams.write_attention_alignment) else: cells = self._decoder_cells initial_state = self._decoder_initial_state self._decoder_inference = seq2seq.BasicDecoder( cell=cells, helper=self._helper_greedy, initial_state=initial_state, output_layer=self._dense_layer) outputs, states, lengths = seq2seq.dynamic_decode( self._decoder_inference, impute_finished=True, swap_memory=False, maximum_iterations=self._hparams.max_label_length) self.inference_outputs = outputs.rnn_output self.inference_predicted_ids = outputs.sample_id if self._hparams.write_attention_alignment is True: self.attention_summary = self._create_attention_alignments_summary(states)
Example #10
Source File: decoder_unimodal.py From avsr-tf1 with GNU General Public License v3.0 | 4 votes |
def _build_decoder_test_beam_search(self): r""" Builds a beam search test decoder """ if self._hparams.enable_attention is True: cells, initial_state = add_attention( cells=self._decoder_cells, attention_types=self._hparams.attention_type[1], num_units=self._hparams.decoder_units_per_layer[-1], memory=self._encoder_memory, memory_len=self._encoder_features_len, beam_search=True, batch_size=self._batch_size, beam_width=self._hparams.beam_width, initial_state=self._decoder_initial_state, mode=self._mode, dtype=self._hparams.dtype, fusion_type='linear_fusion', write_attention_alignment=self._hparams.write_attention_alignment) else: # does the non-attentive beam decoder need tile_batch ? cells = self._decoder_cells decoder_initial_state_tiled = seq2seq.tile_batch( # guess so ? it compiles without it too self._decoder_initial_state, multiplier=self._hparams.beam_width) initial_state = decoder_initial_state_tiled self._decoder_inference = seq2seq.BeamSearchDecoder( cell=cells, embedding=self._embedding_matrix, start_tokens=array_ops.fill([self._batch_size], self._GO_ID), end_token=self._EOS_ID, initial_state=initial_state, beam_width=self._hparams.beam_width, output_layer=self._dense_layer, length_penalty_weight=0.6, ) outputs, states, lengths = seq2seq.dynamic_decode( self._decoder_inference, impute_finished=False, maximum_iterations=self._hparams.max_label_length, swap_memory=False) if self._hparams.write_attention_alignment is True: self.attention_summary, self.attention_alignment = self._create_attention_alignments_summary(states) self.inference_outputs = outputs.beam_search_decoder_output self.inference_predicted_ids = outputs.predicted_ids[:, :, 0] # return the first beam self.inference_predicted_beam = outputs.predicted_ids self.beam_search_output = outputs.beam_search_decoder_output
Example #11
Source File: decoder_unimodal.py From avsr-tf1 with GNU General Public License v3.0 | 4 votes |
def _basic_decoder_train(self): r""" Builds the standard teacher-forcing training decoder with sampling from previous predictions. """ helper_train = seq2seq.ScheduledEmbeddingTrainingHelper( inputs=self._decoder_train_inputs, sequence_length=self._labels_len, embedding=self._embedding_matrix, sampling_probability=self._sampling_probability_outputs, ) # christian_fun = lambda logits: tf.math.top_k(logits, 3).indices # # helper_train = seq2seq.ScheduledOutputTrainingHelper( # inputs=self._decoder_train_inputs, # sequence_length=self._labels_len, # sampling_probability=self._sampling_probability_outputs, # ) if self._hparams.enable_attention is True: cells, initial_state = add_attention( cells=self._decoder_cells, attention_types=self._hparams.attention_type[1], num_units=self._hparams.decoder_units_per_layer[-1], memory=self._encoder_memory, memory_len=self._encoder_features_len, initial_state=self._decoder_initial_state, batch_size=self._batch_size, mode=self._mode, dtype=self._hparams.dtype, fusion_type='linear_fusion', write_attention_alignment=False, # we are in train mode ) else: cells = self._decoder_cells initial_state = self._decoder_initial_state decoder_train = seq2seq.BasicDecoder( cell=cells, helper=helper_train, initial_state=initial_state, output_layer=self._dense_layer, ) outputs, fstate, fseqlen = seq2seq.dynamic_decode( decoder_train, output_time_major=False, impute_finished=True, swap_memory=False, ) return outputs, fstate, fseqlen
Example #12
Source File: decoder_bimodal.py From avsr-tf1 with GNU General Public License v3.0 | 4 votes |
def _build_decoder_train(self): self._labels_embedded = tf.nn.embedding_lookup(self._embedding_matrix, self._labels_padded_GO) self._helper_train = seq2seq.ScheduledEmbeddingTrainingHelper( inputs=self._labels_embedded, sequence_length=self._labels_len, embedding=self._embedding_matrix, sampling_probability=self._sampling_probability_outputs, ) if self._hparams.enable_attention is True: attention_mechanisms, layer_sizes = self._create_attention_mechanisms() attention_cells = seq2seq.AttentionWrapper( cell=self._decoder_cells, attention_mechanism=attention_mechanisms, attention_layer_size=layer_sizes, initial_cell_state=self._decoder_initial_state, alignment_history=False, output_attention=self._output_attention, ) batch_size, _ = tf.unstack(tf.shape(self._labels)) attn_zero = attention_cells.zero_state( dtype=self._hparams.dtype, batch_size=batch_size ) initial_state = attn_zero.clone( cell_state=self._decoder_initial_state ) cells = attention_cells else: cells = self._decoder_cells initial_state = self._decoder_initial_state self._decoder_train = seq2seq.BasicDecoder( cell=cells, helper=self._helper_train, initial_state=initial_state, output_layer=self._dense_layer, ) self._basic_decoder_train_outputs, self._final_states, self._final_seq_lens = seq2seq.dynamic_decode( self._decoder_train, output_time_major=False, impute_finished=True, swap_memory=False, ) self._logits = self._basic_decoder_train_outputs.rnn_output
Example #13
Source File: decoder_bimodal.py From avsr-tf1 with GNU General Public License v3.0 | 4 votes |
def _build_decoder_greedy(self): batch_size, _ = tf.unstack(tf.shape(self._labels)) self._helper_greedy = seq2seq.GreedyEmbeddingHelper( embedding=self._embedding_matrix, start_tokens=tf.tile([self._GO_ID], [batch_size]), end_token=self._EOS_ID) if self._hparams.enable_attention is True: attention_mechanisms, layer_sizes = self._create_attention_mechanisms() attention_cells = seq2seq.AttentionWrapper( cell=self._decoder_cells, attention_mechanism=attention_mechanisms, attention_layer_size=layer_sizes, initial_cell_state=self._decoder_initial_state, alignment_history=self._hparams.write_attention_alignment, output_attention=self._output_attention ) attn_zero = attention_cells.zero_state( dtype=self._hparams.dtype, batch_size=batch_size ) initial_state = attn_zero.clone( cell_state=self._decoder_initial_state ) cells = attention_cells else: cells = self._decoder_cells initial_state = self._decoder_initial_state self._decoder_inference = seq2seq.BasicDecoder( cell=cells, helper=self._helper_greedy, initial_state=initial_state, output_layer=self._dense_layer) outputs, states, lengths = seq2seq.dynamic_decode( self._decoder_inference, impute_finished=True, swap_memory=False, maximum_iterations=self._hparams.max_label_length) # self._result = outputs, states, lengths self.inference_outputs = outputs.rnn_output self.inference_predicted_ids = outputs.sample_id if self._hparams.write_attention_alignment is True: self.attention_summary = self._create_attention_alignments_summary(states)
Example #14
Source File: seq2seq_model.py From AmusingPythonCodes with MIT License | 4 votes |
def _build_model(self): with tf.variable_scope("embeddings"): self.source_embs = tf.get_variable(name="source_embs", shape=[self.cfg.source_vocab_size, self.cfg.emb_dim], dtype=tf.float32, trainable=True) self.target_embs = tf.get_variable(name="embeddings", shape=[self.cfg.vocab_size, self.cfg.emb_dim], dtype=tf.float32, trainable=True) source_emb = tf.nn.embedding_lookup(self.source_embs, self.enc_source) target_emb = tf.nn.embedding_lookup(self.target_embs, self.dec_target_in) print("source embedding shape: {}".format(source_emb.get_shape().as_list())) print("target input embedding shape: {}".format(target_emb.get_shape().as_list())) with tf.variable_scope("encoder"): if self.cfg.use_bi_rnn: with tf.variable_scope("bi-directional_rnn"): cell_fw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \ LSTMCell(self.cfg.num_units) cell_bw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \ LSTMCell(self.cfg.num_units) bi_outputs, _ = bidirectional_dynamic_rnn(cell_fw, cell_bw, source_emb, dtype=tf.float32, sequence_length=self.enc_seq_len) source_emb = tf.concat(bi_outputs, axis=-1) print("bi-directional rnn output shape: {}".format(source_emb.get_shape().as_list())) input_project = tf.layers.Dense(units=self.cfg.num_units, dtype=tf.float32, name="input_projection") source_emb = input_project(source_emb) print("encoder input projection shape: {}".format(source_emb.get_shape().as_list())) enc_cells = self._create_encoder_cell() self.enc_outputs, self.enc_states = dynamic_rnn(enc_cells, source_emb, sequence_length=self.enc_seq_len, dtype=tf.float32) print("encoder output shape: {}".format(self.enc_outputs.get_shape().as_list())) with tf.variable_scope("decoder"): self.max_dec_seq_len = tf.reduce_max(self.dec_seq_len, name="max_dec_seq_len") self.dec_cells, self.dec_init_states = self._create_decoder_cell() # define input and output projection layer input_project = tf.layers.Dense(units=self.cfg.num_units, name="input_projection") self.dense_layer = tf.layers.Dense(units=self.cfg.vocab_size, name="output_projection") if self.mode == "train": # either "train" or "decode" # for training target_emb = input_project(target_emb) train_helper = TrainingHelper(target_emb, sequence_length=self.dec_seq_len, name="train_helper") train_decoder = BasicDecoder(self.dec_cells, helper=train_helper, output_layer=self.dense_layer, initial_state=self.dec_init_states) self.dec_output, _, _ = dynamic_decode(train_decoder, impute_finished=True, maximum_iterations=self.max_dec_seq_len) print("decoder output shape: {} (vocab size)".format(self.dec_output.rnn_output.get_shape().as_list())) # for decode start_token = tf.ones(shape=[self.batch_size, ], dtype=tf.int32) * self.cfg.target_dict[GO] end_token = self.cfg.target_dict[EOS] def inputs_project(inputs): return input_project(tf.nn.embedding_lookup(self.target_embs, inputs)) dec_helper = GreedyEmbeddingHelper(embedding=inputs_project, start_tokens=start_token, end_token=end_token) infer_decoder = BasicDecoder(self.dec_cells, helper=dec_helper, initial_state=self.dec_init_states, output_layer=self.dense_layer) infer_dec_output, _, _ = dynamic_decode(infer_decoder, maximum_iterations=self.cfg.maximum_iterations) self.dec_predicts = infer_dec_output.sample_id
Example #15
Source File: attention_predictor.py From aster with MIT License | 4 votes |
def predict(self, feature_maps, scope=None): if not isinstance(feature_maps, (list, tuple)): raise ValueError('`feature_maps` must be list of tuple') with tf.variable_scope(scope, 'Predict', feature_maps): batch_size = shape_utils.combined_static_and_dynamic_shape(feature_maps[0])[0] decoder_cell = self._build_decoder_cell(feature_maps) decoder = self._build_decoder(decoder_cell, batch_size) outputs, _, output_lengths = seq2seq.dynamic_decode( decoder=decoder, output_time_major=False, impute_finished=False, maximum_iterations=self._max_num_steps ) # apply regularizer filter_weights = lambda vars : [x for x in vars if x.op.name.endswith('kernel')] tf.contrib.layers.apply_regularization( self._rnn_regularizer, filter_weights(decoder_cell.trainable_weights)) outputs_dict = None if self._is_training: assert isinstance(outputs, seq2seq.BasicDecoderOutput) outputs_dict = { 'labels': outputs.sample_id, 'logits': outputs.rnn_output, } else: assert isinstance(outputs, seq2seq.FinalBeamSearchDecoderOutput) prediction_labels = outputs.predicted_ids[:,:,0] prediction_lengths = output_lengths[:,0] prediction_scores = tf.gather_nd( outputs.beam_search_decoder_output.scores[:,:,0], tf.stack([tf.range(batch_size), prediction_lengths-1], axis=1) ) outputs_dict = { 'labels': prediction_labels, 'scores': prediction_scores, 'lengths': prediction_lengths } return outputs_dict