Python sklearn.kernel_ridge.KernelRidge() Examples
The following are 22
code examples of sklearn.kernel_ridge.KernelRidge().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.kernel_ridge
, or try the search function
.
Example #1
Source File: tools.py From neural-tangent-kernel-UCI with Apache License 2.0 | 5 votes |
def ridge_regression(K1, K2, y1, y2, alpha, c): n_val, n_train = K2.shape clf = KernelRidge(kernel = "precomputed", alpha = alpha) one_hot_label = np.eye(c)[y1] - 1.0 / c clf.fit(K1, one_hot_label) z = clf.predict(K2).argmax(axis = 1) return 1.0 * np.sum(z == y2) / n_val
Example #2
Source File: test_kernel_ridge.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
Example #3
Source File: test_kernel_ridge.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3)
Example #4
Source File: test_kernel_ridge.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2)
Example #5
Source File: test_kernel_ridge.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2)
Example #6
Source File: test_kernel_ridge.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2)
Example #7
Source File: test_kernel_ridge.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2)
Example #8
Source File: test_kernel_ridge.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2)
Example #9
Source File: test_kernel_ridge.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.kernel_ridge.KernelRidge, kr.KernelRidge)
Example #10
Source File: test_codec.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def test_KernelRidge(self): KernelRidgeAlgo.register_codecs() self.regressor_util(KernelRidge)
Example #11
Source File: KernelRidge.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def __init__(self, options): self.handle_options(options) out_params = convert_params(options.get('params', {}), floats=['gamma']) out_params['kernel'] = 'rbf' self.estimator = _KernelRidge(**out_params)
Example #12
Source File: delaney_krr.py From deepchem with MIT License | 5 votes |
def model_builder(model_dir): sklearn_model = KernelRidge(kernel="rbf", alpha=1e-3, gamma=0.05) return dc.models.SklearnModel(sklearn_model, model_dir)
Example #13
Source File: kernel_ridge.py From lale with Apache License 2.0 | 5 votes |
def __init__(self, alpha=1, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None): self._hyperparams = { 'alpha': alpha, 'kernel': kernel, 'gamma': gamma, 'degree': degree, 'coef0': coef0, 'kernel_params': kernel_params} self._wrapped_model = Op(**self._hyperparams)
Example #14
Source File: ml_regressor.py From rampy with GNU General Public License v2.0 | 5 votes |
def fit(self): """Scale data and train the model with the indicated algorithm. Do not forget to tune the hyperparameters. Parameters ---------- algorithm : String, "KernelRidge", "SVM", "LinearRegression", "Lasso", "ElasticNet", "NeuralNet", "BaggingNeuralNet", default = "SVM" """ self.X_scaler.fit(self.X_train) self.Y_scaler.fit(self.y_train) # scaling the data in all cases, it may not be used during the fit later self.X_train_sc = self.X_scaler.transform(self.X_train) self.y_train_sc = self.Y_scaler.transform(self.y_train) self.X_test_sc = self.X_scaler.transform(self.X_test) self.y_test_sc = self.Y_scaler.transform(self.y_test) if self.algorithm == "KernelRidge": clf_kr = KernelRidge(kernel=self.user_kernel) self.model = sklearn.model_selection.GridSearchCV(clf_kr, cv=5, param_grid=self.param_kr) elif self.algorithm == "SVM": clf_svm = SVR(kernel=self.user_kernel) self.model = sklearn.model_selection.GridSearchCV(clf_svm, cv=5, param_grid=self.param_svm) elif self.algorithm == "Lasso": clf_lasso = sklearn.linear_model.Lasso(alpha=0.1,random_state=self.rand_state) self.model = sklearn.model_selection.GridSearchCV(clf_lasso, cv=5, param_grid=dict(alpha=np.logspace(-5,5,30))) elif self.algorithm == "ElasticNet": clf_ElasticNet = sklearn.linear_model.ElasticNet(alpha=0.1, l1_ratio=0.5,random_state=self.rand_state) self.model = sklearn.model_selection.GridSearchCV(clf_ElasticNet,cv=5, param_grid=dict(alpha=np.logspace(-5,5,30))) elif self.algorithm == "LinearRegression": self.model = sklearn.linear_model.LinearRegression() elif self.algorithm == "NeuralNet": self.model = MLPRegressor(**self.param_neurons) elif self.algorithm == "BaggingNeuralNet": nn_m = MLPRegressor(**self.param_neurons) self.model = BaggingRegressor(base_estimator = nn_m, **self.param_bag) if self.scaling == True: self.model.fit(self.X_train_sc, self.y_train_sc.reshape(-1,)) predict_train_sc = self.model.predict(self.X_train_sc) self.prediction_train = self.Y_scaler.inverse_transform(predict_train_sc.reshape(-1,1)) predict_test_sc = self.model.predict(self.X_test_sc) self.prediction_test = self.Y_scaler.inverse_transform(predict_test_sc.reshape(-1,1)) else: self.model.fit(self.X_train, self.y_train.reshape(-1,)) self.prediction_train = self.model.predict(self.X_train) self.prediction_test = self.model.predict(self.X_test)
Example #15
Source File: test_kernel_ridge.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
Example #16
Source File: test_kernel_ridge.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3)
Example #17
Source File: test_kernel_ridge.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2)
Example #18
Source File: test_kernel_ridge.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2)
Example #19
Source File: test_kernel_ridge.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2)
Example #20
Source File: test_kernel_ridge.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2)
Example #21
Source File: test_kernel_ridge.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2)
Example #22
Source File: qm7_sklearn.py From deepchem with MIT License | 5 votes |
def model_builder(model_dir): sklearn_model = KernelRidge(kernel="rbf", alpha=5e-4, gamma=0.008) return dc.models.SklearnModel(sklearn_model, model_dir)