Python glob.glob() Examples
The following are 30
code examples of glob.glob().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
glob
, or try the search function
.
Example #1
Source File: get_data.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 10 votes |
def get_cifar10(data_dir): if not os.path.isdir(data_dir): os.system("mkdir " + data_dir) cwd = os.path.abspath(os.getcwd()) os.chdir(data_dir) if (not os.path.exists('train.rec')) or \ (not os.path.exists('test.rec')) : import urllib, zipfile, glob dirname = os.getcwd() zippath = os.path.join(dirname, "cifar10.zip") urllib.urlretrieve("http://data.mxnet.io/mxnet/data/cifar10.zip", zippath) zf = zipfile.ZipFile(zippath, "r") zf.extractall() zf.close() os.remove(zippath) for f in glob.glob(os.path.join(dirname, "cifar", "*")): name = f.split(os.path.sep)[-1] os.rename(f, os.path.join(dirname, name)) os.rmdir(os.path.join(dirname, "cifar")) os.chdir(cwd) # data
Example #2
Source File: datasets.py From pruning_yolov3 with GNU General Public License v3.0 | 8 votes |
def convert_images2bmp(): # cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s for path in ['../coco/images/val2014/', '../coco/images/train2014/']: folder = os.sep + Path(path).name output = path.replace(folder, folder + 'bmp') if os.path.exists(output): shutil.rmtree(output) # delete output folder os.makedirs(output) # make new output folder for f in tqdm(glob.glob('%s*.jpg' % path)): save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp') cv2.imwrite(save_name, cv2.imread(f)) for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']: with open(label_path, 'r') as file: lines = file.read() lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace( '/Users/glennjocher/PycharmProjects/', '../') with open(label_path.replace('5k', '5k_bmp'), 'w') as file: file.write(lines)
Example #3
Source File: test_sanity_tutorials.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 7 votes |
def test_tutorial_downloadable(): """ Make sure that every tutorial that isn't in the whitelist has the placeholder that enables notebook download """ download_button_string = '<!-- INSERT SOURCE DOWNLOAD BUTTONS -->' tutorial_path = os.path.join(os.path.dirname(__file__), '..', '..', 'docs', 'tutorials') tutorials = glob.glob(os.path.join(tutorial_path, '**', '*.md')) for tutorial in tutorials: with open(tutorial, 'r') as file: lines= file.readlines() last = lines[-1] second_last = lines[-2] downloadable = download_button_string in last or download_button_string in second_last friendly_name = '/'.join(tutorial.split('/')[-2:]) if not downloadable and friendly_name not in whitelist_set: print(last, second_last) assert False, "{} is missing <!-- INSERT SOURCE DOWNLOAD BUTTONS --> as its last line".format(friendly_name)
Example #4
Source File: test_notebooks_single_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 7 votes |
def test_completeness(self): """ Make sure that every tutorial that isn't in the whitelist is considered for testing by this file. Exceptions should be added to the whitelist. N.B. If the test is commented out, then that will be viewed as an intentional disabling of the test. """ # Open up this test file. with open(__file__, 'r') as f: notebook_test_text = '\n'.join(f.readlines()) notebooks_path = os.path.join(os.path.dirname(__file__), 'straight_dope_book') notebooks = glob.glob(os.path.join(notebooks_path, '**', '*.ipynb')) # Compile a list of notebooks that are tested tested_notebooks = set(re.findall(r"assert _test_notebook\('(.*)'\)", notebook_test_text)) # Ensure each notebook in the straight dope book directory is on the whitelist or is tested. for notebook in notebooks: friendly_name = '/'.join(notebook.split('/')[-2:]).split('.')[0] if friendly_name not in tested_notebooks and friendly_name not in NOTEBOOKS_WHITELIST: assert False, friendly_name + " has not been added to the nightly/tests/straight_" + \ "dope/test_notebooks_single_gpu.py test_suite. Consider also adding " + \ "it to nightly/tests/straight_dope/test_notebooks_multi_gpu.py as " + \ "well if the notebooks makes use of multiple GPUs."
Example #5
Source File: test_gluon_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 7 votes |
def test_multiprocessing_download_successful(): """ test download with multiprocessing """ tmp = tempfile.mkdtemp() tmpfile = os.path.join(tmp, 'README.md') process_list = [] # test it with 10 processes for i in range(10): process_list.append(mp.Process( target=_download_successful, args=(tmpfile,))) process_list[i].start() for i in range(10): process_list[i].join() assert os.path.getsize(tmpfile) > 100, os.path.getsize(tmpfile) # check only one file we want left pattern = os.path.join(tmp, 'README.md*') assert len(glob.glob(pattern)) == 1, glob.glob(pattern) # delete temp dir shutil.rmtree(tmp)
Example #6
Source File: misc.py From disentangling_conditional_gans with MIT License | 7 votes |
def locate_result_subdir(run_id_or_result_subdir): if isinstance(run_id_or_result_subdir, str) and os.path.isdir(run_id_or_result_subdir): return run_id_or_result_subdir searchdirs = [] searchdirs += [''] searchdirs += ['results'] searchdirs += ['networks'] for searchdir in searchdirs: dir = config.result_dir if searchdir == '' else os.path.join(config.result_dir, searchdir) dir = os.path.join(dir, str(run_id_or_result_subdir)) if os.path.isdir(dir): return dir prefix = '%03d' % run_id_or_result_subdir if isinstance(run_id_or_result_subdir, int) else str(run_id_or_result_subdir) dirs = sorted(glob.glob(os.path.join(config.result_dir, searchdir, prefix + '-*'))) dirs = [dir for dir in dirs if os.path.isdir(dir)] if len(dirs) == 1: return dirs[0] raise IOError('Cannot locate result subdir for run', run_id_or_result_subdir)
Example #7
Source File: utils.py From pruning_yolov3 with GNU General Public License v3.0 | 6 votes |
def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay() # Plot training results files 'results*.txt', overlaying train and val losses s = ['train', 'train', 'train', 'Precision', 'mAP', 'val', 'val', 'val', 'Recall', 'F1'] # legends t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) fig, ax = plt.subplots(1, 5, figsize=(14, 3.5)) ax = ax.ravel() for i in range(5): for j in [i, i + 5]: y = results[j, x] if i in [0, 1, 2]: y[y == 0] = np.nan # dont show zero loss values ax[i].plot(x, y, marker='.', label=s[j]) ax[i].set_title(t[i]) ax[i].legend() ax[i].set_ylabel(f) if i == 0 else None # add filename fig.tight_layout() fig.savefig(f.replace('.txt', '.png'), dpi=200)
Example #8
Source File: simplify_nq_data.py From natural-questions with Apache License 2.0 | 6 votes |
def main(_): """Runs `text_utils.simplify_nq_example` over all shards of a split. Prints simplified examples to a single gzipped file in the same directory as the input shards. """ split = os.path.basename(FLAGS.data_dir) outpath = os.path.join(FLAGS.data_dir, "simplified-nq-{}.jsonl.gz".format(split)) with gzip.open(outpath, "wb") as fout: num_processed = 0 start = time.time() for inpath in glob.glob(os.path.join(FLAGS.data_dir, "nq-*-??.jsonl.gz")): print("Processing {}".format(inpath)) with gzip.open(inpath, "rb") as fin: for l in fin: utf8_in = l.decode("utf8", "strict") utf8_out = json.dumps( text_utils.simplify_nq_example(json.loads(utf8_in))) + u"\n" fout.write(utf8_out.encode("utf8")) num_processed += 1 if not num_processed % 100: print("Processed {} examples in {}.".format(num_processed, time.time() - start))
Example #9
Source File: views.py From MPContribs with MIT License | 6 votes |
def index(request): ctx = get_context(request) cname = os.environ["PORTAL_CNAME"] template_dir = get_app_template_dirs("templates/notebooks")[0] htmls = os.path.join(template_dir, cname, "*.html") ctx["notebooks"] = [ p.split("/" + cname + "/")[-1].replace(".html", "") for p in glob(htmls) ] ctx["PORTAL_CNAME"] = cname ctx["landing_pages"] = [] mask = ["project", "title", "authors", "is_public", "description", "urls"] client = Client(headers=get_consumer(request)) # sets/returns global variable entries = client.projects.get_entries(_fields=mask).result()["data"] for entry in entries: authors = entry["authors"].strip().split(",", 1) if len(authors) > 1: authors[1] = authors[1].strip() entry["authors"] = authors entry["description"] = entry["description"].split(".", 1)[0] + "." ctx["landing_pages"].append( entry ) # visibility governed by is_public flag and X-Consumer-Groups header return render(request, "home.html", ctx.flatten())
Example #10
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 6 votes |
def create_celeba(tfrecord_dir, celeba_dir, cx=89, cy=121): print('Loading CelebA from "%s"' % celeba_dir) glob_pattern = os.path.join(celeba_dir, 'img_align_celeba_png', '*.png') image_filenames = sorted(glob.glob(glob_pattern)) expected_images = 202599 if len(image_filenames) != expected_images: error('Expected to find %d images' % expected_images) with TFRecordExporter(tfrecord_dir, len(image_filenames)) as tfr: order = tfr.choose_shuffled_order() for idx in range(order.size): img = np.asarray(PIL.Image.open(image_filenames[order[idx]])) assert img.shape == (218, 178, 3) img = img[cy - 64 : cy + 64, cx - 64 : cx + 64] img = img.transpose(2, 0, 1) # HWC => CHW tfr.add_image(img) #----------------------------------------------------------------------------
Example #11
Source File: test.py From DDPAE-video-prediction with MIT License | 6 votes |
def main(): opt, logger, vis = utils.build(is_train=False) dloader = data.get_data_loader(opt) print('Val dataset: {}'.format(len(dloader.dataset))) model = models.get_model(opt) for epoch in opt.which_epochs: # Load checkpoint if epoch == -1: # Find the latest checkpoint checkpoints = glob.glob(os.path.join(opt.ckpt_path, 'net*.pth')) assert len(checkpoints) > 0 epochs = [int(filename.split('_')[-1][:-4]) for filename in checkpoints] epoch = max(epochs) logger.print('Loading checkpoints from {}, epoch {}'.format(opt.ckpt_path, epoch)) model.load(opt.ckpt_path, epoch) results = evaluate(opt, dloader, model) for metric in results: logger.print('{}: {}'.format(metric, results[metric]))
Example #12
Source File: train_val.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def find_previous(self): sfiles = os.path.join(self.output_dir, cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_*.pth') sfiles = glob.glob(sfiles) sfiles.sort(key=os.path.getmtime) # Get the snapshot name in pytorch redfiles = [] for stepsize in cfg.TRAIN.STEPSIZE: redfiles.append(os.path.join(self.output_dir, cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}.pth'.format(stepsize+1))) sfiles = [ss for ss in sfiles if ss not in redfiles] nfiles = os.path.join(self.output_dir, cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_*.pkl') nfiles = glob.glob(nfiles) nfiles.sort(key=os.path.getmtime) redfiles = [redfile.replace('.pth', '.pkl') for redfile in redfiles] nfiles = [nn for nn in nfiles if nn not in redfiles] lsf = len(sfiles) assert len(nfiles) == lsf return lsf, nfiles, sfiles
Example #13
Source File: utils.py From pruning_yolov3 with GNU General Public License v3.0 | 6 votes |
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels() if os.path.exists('new/'): shutil.rmtree('new/') # delete output folder os.makedirs('new/') # make new output folder os.makedirs('new/labels/') os.makedirs('new/images/') for file in tqdm(sorted(glob.glob('%s/*.*' % path))): with open(file, 'r') as f: labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) i = labels[:, 0] == label_class if any(i): img_file = file.replace('labels', 'images').replace('txt', 'jpg') labels[:, 0] = 0 # reset class to 0 with open('new/images.txt', 'a') as f: # add image to dataset list f.write(img_file + '\n') with open('new/labels/' + Path(file).name, 'a') as f: # write label for l in labels[i]: f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l)) shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
Example #14
Source File: utils.py From pruning_yolov3 with GNU General Public License v3.0 | 6 votes |
def plot_results(start=0, stop=0): # from utils.utils import *; plot_results() # Plot training results files 'results*.txt' fig, ax = plt.subplots(2, 5, figsize=(14, 7)) ax = ax.ravel() s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', 'val GIoU', 'val Objectness', 'val Classification', 'mAP', 'F1'] for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) for i in range(10): y = results[i, x] if i in [0, 1, 2, 5, 6, 7]: y[y == 0] = np.nan # dont show zero loss values ax[i].plot(x, y, marker='.', label=f.replace('.txt', '')) ax[i].set_title(s[i]) if i in [5, 6, 7]: # share train and val loss y axes ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) fig.tight_layout() ax[1].legend() fig.savefig('results.png', dpi=200)
Example #15
Source File: datasets.py From pruning_yolov3 with GNU General Public License v3.0 | 6 votes |
def __init__(self, path, img_size=416, half=False): path = str(Path(path)) # os-agnostic files = [] if os.path.isdir(path): files = sorted(glob.glob(os.path.join(path, '*.*'))) elif os.path.isfile(path): files = [path] images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats] videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats] nI, nV = len(images), len(videos) self.img_size = img_size self.files = images + videos self.nF = nI + nV # number of files self.video_flag = [False] * nI + [True] * nV self.mode = 'images' self.half = half # half precision fp16 images if any(videos): self.new_video(videos[0]) # new video else: self.cap = None assert self.nF > 0, 'No images or videos found in ' + path
Example #16
Source File: checkpoint.py From deep-summarization with MIT License | 6 votes |
def delete_previous_checkpoints(self, num_previous=5): """ Deletes all previous checkpoints that are <num_previous> before the present checkpoint. This is done to prevent blowing out of memory due to too many checkpoints :param num_previous: :return: """ self.present_checkpoints = glob.glob(self.get_checkpoint_location() + '/*.ckpt') if len(self.present_checkpoints) > num_previous: present_ids = [self.__get_id(ckpt) for ckpt in self.present_checkpoints] present_ids.sort() ids_2_delete = present_ids[0:len(present_ids) - num_previous] for ckpt_id in ids_2_delete: ckpt_file_nm = self.get_checkpoint_location() + '/model_' + str(ckpt_id) + '.ckpt' os.remove(ckpt_file_nm)
Example #17
Source File: checkpoint.py From deep-summarization with MIT License | 6 votes |
def get_last_checkpoint(self): """ Assumes that the last checpoint has a higher checkpoint id. Checkpoint will be saved in this exact format model_<checkpint_id>.ckpt Eg - model_100.ckpt :return: """ ''' ''' self.present_checkpoints = glob.glob(self.get_checkpoint_location() + '/*.ckpt') if len(self.present_checkpoints) != 0: present_ids = [self.__get_id(ckpt) for ckpt in self.present_checkpoints] # sort the ID's and return the model for the last ID present_ids.sort() self.last_id = present_ids[-1] self.last_ckpt = self.get_checkpoint_location() + '/model_' +\ str(self.last_id) + '.ckpt' return self.last_ckpt
Example #18
Source File: run_doctest.py From OpenFermion-Cirq with Apache License 2.0 | 6 votes |
def main(): quiet = len(sys.argv) >= 2 and sys.argv[1] == '-q' file_names = glob.glob('openfermion-cirq/**/*.py', recursive=True) failed, attempted = run_tests(file_names, include_modules=True, include_local=False, quiet=quiet) if failed != 0: print( shell_tools.highlight( f'Failed: {failed} failed, ' '{attempted - failed} passed, {attempted} total', shell_tools.RED)) sys.exit(1) else: print(shell_tools.highlight(f'Passed: {attempted}', shell_tools.GREEN)) sys.exit(0)
Example #19
Source File: kuka_diverse_object_gym_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def _get_random_object(self, num_objects, test): """Randomly choose an object urdf from the random_urdfs directory. Args: num_objects: Number of graspable objects. Returns: A list of urdf filenames. """ if test: urdf_pattern = os.path.join(self._urdfRoot, 'random_urdfs/*0/*.urdf') else: urdf_pattern = os.path.join(self._urdfRoot, 'random_urdfs/*[^0]/*.urdf') found_object_directories = glob.glob(urdf_pattern) total_num_objects = len(found_object_directories) selected_objects = np.random.choice(np.arange(total_num_objects), num_objects) selected_objects_filenames = [] for object_index in selected_objects: selected_objects_filenames += [found_object_directories[object_index]] return selected_objects_filenames
Example #20
Source File: build.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def get_platforms(path: str = get_dockerfiles_path()) -> List[str]: """Get a list of architectures given our dockerfiles""" dockerfiles = glob.glob(os.path.join(path, "Dockerfile.build.*")) dockerfiles = list(filter(lambda x: x[-1] != '~', dockerfiles)) files = list(map(lambda x: re.sub(r"Dockerfile.build.(.*)", r"\1", x), dockerfiles)) platforms = list(map(lambda x: os.path.split(x)[1], sorted(files))) return platforms
Example #21
Source File: cleanup.py From Servo with BSD 2-Clause "Simplified" License | 5 votes |
def handle(self, *args, **options): size = 128, 128 logging.info("Building avatar thumbnails") for infile in glob("servo/uploads/avatars/*.jpg"): logging.info(infile) im = Image.open(infile) im.thumbnail(size, Image.ANTIALIAS) im.save(infile, "JPEG") logging.info("Cleaning up unused attachments") for infile in glob("servo/uploads/attachments/*"): fn = infile.decode('utf-8') fp = os.path.join("attachments", os.path.basename(fn)) try: Attachment.objects.get(content=fp) except Attachment.DoesNotExist: os.remove(infile)
Example #22
Source File: io.py From vergeml with MIT License | 5 votes |
def scan(self, path, exclude=[]) -> List[str]: """Scan path for matching files. :param path: the path to scan :param exclude: a list of directories to exclude :return: a list of sorted filenames """ res = [] path = path.rstrip("/").rstrip("\\") for pat in self.input_patterns: res.extend(glob.glob(path + os.sep + pat, recursive=True)) res = list(filter(lambda p: os.path.isfile(p), res)) if exclude: def excluded(path): for e in exclude: if path.startswith(e): return True return False res = list(filter(lambda p: not excluded(p), res)) return sorted(res)
Example #23
Source File: topology.py From InsightAgent with Apache License 2.0 | 5 votes |
def _get_pid_of_inode(inode): ''' To retrieve the process pid, check every running process and look for one using the given inode. ''' for item in glob.glob('/proc/[0-9]*/fd/[0-9]*'): try: if re.search(inode, os.readlink(item)): return item.split('/')[2] except: pass return None
Example #24
Source File: transformer_model.py From fine-lm with MIT License | 5 votes |
def __init__(self, processor_configuration): """Creates the Transformer estimator. Args: processor_configuration: A ProcessorConfiguration protobuffer with the transformer fields populated. """ # Do the pre-setup tensor2tensor requires for flags and configurations. transformer_config = processor_configuration["transformer"] FLAGS.output_dir = transformer_config["model_dir"] usr_dir.import_usr_dir(FLAGS.t2t_usr_dir) data_dir = os.path.expanduser(transformer_config["data_dir"]) # Create the basic hyper parameters. self.hparams = trainer_lib.create_hparams( transformer_config["hparams_set"], transformer_config["hparams"], data_dir=data_dir, problem_name=transformer_config["problem"]) decode_hp = decoding.decode_hparams() decode_hp.add_hparam("shards", 1) decode_hp.add_hparam("shard_id", 0) # Create the estimator and final hyper parameters. self.estimator = trainer_lib.create_estimator( transformer_config["model"], self.hparams, t2t_trainer.create_run_config(self.hparams), decode_hparams=decode_hp, use_tpu=False) # Fetch the vocabulary and other helpful variables for decoding. self.source_vocab = self.hparams.problem_hparams.vocabulary["inputs"] self.targets_vocab = self.hparams.problem_hparams.vocabulary["targets"] self.const_array_size = 10000 # Prepare the Transformer's debug data directory. run_dirs = sorted(glob.glob(os.path.join("/tmp/t2t_server_dump", "run_*"))) for run_dir in run_dirs: shutil.rmtree(run_dir)
Example #25
Source File: adventure.py From Dumb-Cogs with MIT License | 5 votes |
def team_saves(self, ctx, team=None): # TeamNebNeb didn't show saves also !advernture embark didn't load save author = ctx.message.author server = ctx.message.server channel = ctx.message.channel if team is None: try: team = self.players[server.id][channel.id][author.id] except: try: teams = self.teams[server.id]["MEMBERS"][author.id] if len(teams) != 1: await self.bot.reply('You are in more than one team. Please specify which team to see the saves for.') return team = teams[0] except: await self.bot.reply('You are not in any team. Find one that will recruit you or create you own with `{}team new`'.format(ctx.prefix)) return team = self._safe_path(team).lower() tname = self._team_name(server, team) try: # http://stackoverflow.com/questions/168409/how-do-you-get-a-directory-listing-sorted-by-creation-date-in-python files = list(filter(os.path.isfile, glob.glob('data/adventure/saves/{}/{}/*.save'.format(server.id, team)))) files.sort(key=os.path.getmtime, reverse=True) if not files: raise NoSave msg = tname+"'s save" if len(files) > 1: msg += 's' reg = re.compile('data/adventure/saves/{}/{}/([^/]*).save'.format(server.id,team)) # just bein verbose msg += ':\n' + '\n'.join([str(num+1) + ". " + re.findall(reg, sv)[0] for num,sv in enumerate(files)]) await self.bot.reply(msg) except Exception as e: print(e) await self.bot.reply('The {} team does not have any saves'.format(tname)) # only leaders can recruit?
Example #26
Source File: test_gluon_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_download_successful(): """ test download with one process """ tmp = tempfile.mkdtemp() tmpfile = os.path.join(tmp, 'README.md') _download_successful(tmpfile) assert os.path.getsize(tmpfile) > 100, os.path.getsize(tmpfile) pattern = os.path.join(tmp, 'README.md*') # check only one file we want left assert len(glob.glob(pattern)) == 1, glob.glob(pattern) # delete temp dir shutil.rmtree(tmp)
Example #27
Source File: data.py From DOTA_models with Apache License 2.0 | 5 votes |
def ExampleGen(data_path, num_epochs=None): """Generates tf.Examples from path of data files. Binary data format: <length><blob>. <length> represents the byte size of <blob>. <blob> is serialized tf.Example proto. The tf.Example contains the tokenized article text and summary. Args: data_path: path to tf.Example data files. num_epochs: Number of times to go through the data. None means infinite. Yields: Deserialized tf.Example. If there are multiple files specified, they accessed in a random order. """ epoch = 0 while True: if num_epochs is not None and epoch >= num_epochs: break filelist = glob.glob(data_path) assert filelist, 'Empty filelist.' random.shuffle(filelist) for f in filelist: reader = open(f, 'rb') while True: len_bytes = reader.read(8) if not len_bytes: break str_len = struct.unpack('q', len_bytes)[0] example_str = struct.unpack('%ds' % str_len, reader.read(str_len))[0] yield example_pb2.Example.FromString(example_str) epoch += 1
Example #28
Source File: kerasrl_utils.py From soccer-matlab with BSD 2-Clause "Simplified" License | 5 votes |
def get_latest_save(file_folder, agent_name, env_name, version_number): """ Returns the properties of the latest weight save. The information can be used to generate the loading path :return: """ path = "%s%s"% (file_folder, "*.h5") file_list = glob.glob(path) latest_file_properties = [] file_properties = [] for f in file_list: file_properties = get_fields(f) if file_properties[0] == agent_name and file_properties[1] == env_name and (latest_file_properties == [] or file_properties[2] > latest_file_properties[2]): latest_file_properties = file_properties return latest_file_properties
Example #29
Source File: admin.py From Servo with BSD 2-Clause "Simplified" License | 5 votes |
def all(cls): from glob import glob return [cls(s) for s in glob("backups/*.gz")]
Example #30
Source File: temperature_sensor.py From SecPi with GNU General Public License v3.0 | 5 votes |
def __init__(self, id, params, worker): super(TemperatureSensor, self).__init__(id, params, worker) #self.active = False try: self.min = int(params["min"]) self.max = int(params["max"]) self.bouncetime = int(params["bouncetime"]) self.device_id = params["device_id"] except ValueError as ve: # if one configuration parameter can't be parsed as int logging.error("TemperatureSensor: Wasn't able to initialize the sensor, please check your configuration: %s" % ve) self.corrupted = True return except KeyError as ke: # if config parameters are missing logging.error("TemperatureSensor: Wasn't able to initialize the sensor, it seems there is a config parameter missing: %s" % ke) self.corrupted = True return os.system('modprobe w1-gpio') os.system('modprobe w1-therm') base_dir = '/sys/bus/w1/devices/' #device_folder = glob.glob(base_dir + '28*')[0] self.device_file = base_dir + self.device_id + '/w1_slave' if not os.path.isfile(self.device_file): # if there is no slave file which contains the temperature self.corrupted = True logging.error("TemperatureSensor: Wasn't able to find temperature file at %s" % self.device_file) return logging.debug("TemperatureSensor: Sensor initialized")