Python chainer.functions.mean_absolute_error() Examples
The following are 23
code examples of chainer.functions.mean_absolute_error().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.functions
, or try the search function
.
Example #1
Source File: updater.py From chainer-partial_convolution_image_inpainting with MIT License | 6 votes |
def calc_loss_style(hout_dict,hcomp_dict,hgt_dict): layers = hgt_dict.keys() for i,layer_name in enumerate(layers): B,C,H,W = hout_dict[layer_name].shape hout = F.reshape(hout_dict[layer_name],(B,C,H*W)) hcomp = F.reshape(hcomp_dict[layer_name],(B,C,H*W)) hgt = F.reshape(hgt_dict[layer_name],(B,C,H*W)) hout_gram = F.batch_matmul(hout,hout,transb=True) hcomp_gram = F.batch_matmul(hcomp,hcomp,transb=True) hgt_gram = F.batch_matmul(hgt,hgt,transb=True) if i==0: L_style_out = F.mean_absolute_error(hout_gram,hgt_gram)/(C*H*W) L_style_comp = F.mean_absolute_error(hcomp_gram,hgt_gram)/(C*H*W) else: L_style_out += F.mean_absolute_error(hout_gram,hgt_gram)/(C*H*W) L_style_comp += F.mean_absolute_error(hcomp_gram,hgt_gram)/(C*H*W) return L_style_out + L_style_comp
Example #2
Source File: updater.py From pfio with MIT License | 5 votes |
def loss_enc(self, enc, x_out, t_out, y_out, lam1=100, lam2=1): batchsize, _, w, h = y_out.data.shape loss_rec = lam1*(F.mean_absolute_error(x_out, t_out)) loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h loss = loss_rec + loss_adv chainer.report({'loss': loss}, enc) return loss
Example #3
Source File: updater.py From yukarin with MIT License | 5 votes |
def _loss_predictor_cg(predictor, reconstruct, output, target, d_fake, loss_config: LossConfig): b, _, t = d_fake.data.shape loss_mse = (F.mean_absolute_error(reconstruct, target)) chainer.report({'mse': loss_mse}, predictor) loss_identity = (F.mean_absolute_error(output, target)) chainer.report({'identity': loss_identity}, predictor) loss_adv = F.sum(F.softplus(-d_fake)) / (b * t) chainer.report({'adversarial': loss_adv}, predictor) loss = loss_config.mse * loss_mse + loss_config.mse / 100 * loss_identity + loss_config.adversarial * loss_adv chainer.report({'loss': loss}, predictor) return loss
Example #4
Source File: updater.py From yukarin with MIT License | 5 votes |
def _loss_predictor(predictor, output, target, d_fake, loss_config: LossConfig): b, _, t = d_fake.data.shape loss_mse = (F.mean_absolute_error(output, target)) chainer.report({'mse': loss_mse}, predictor) loss_adv = F.sum(F.softplus(-d_fake)) / (b * t) chainer.report({'adversarial': loss_adv}, predictor) loss = loss_config.mse * loss_mse + loss_config.adversarial * loss_adv chainer.report({'loss': loss}, predictor) return loss
Example #5
Source File: updater.py From pixcaler with MIT License | 5 votes |
def loss_func_rec_gen(self, x_in, x_out): return F.mean_absolute_error(x_out, x_in)
Example #6
Source File: updater.py From pixcaler with MIT License | 5 votes |
def loss_func_rec_gen(self, x_in, x_out): return F.mean_absolute_error(x_out, x_in)
Example #7
Source File: network.py From Looking-to-Listen with MIT License | 5 votes |
def __call__(self, num): # ===== Initialize variables ===== # audio_spec, face1, face2, true_spec = self.loadData(num=num) # ===== Compute mask ===== # y = self.separateSpectrogram(spec=audio_spec, face1=face1, face2=face2) # ===== Evaluate loss ===== # loss = F.mean_absolute_error(y, true_spec) #assert xp.isnan(loss.data).any()==False, "assert np.isnan(loss) {}".format(num) if xp.isnan(loss.data).any()==True: loss = chainer.Variable(xp.zeros(loss.shape)) reporter.report({"loss": loss.data}, self) return loss
Example #8
Source File: sr_updater.py From become-yukarin with MIT License | 5 votes |
def _loss_predictor(self, predictor, output, target, d_fake): b, _, w, h = d_fake.data.shape loss_mse = (F.mean_absolute_error(output, target)) chainer.report({'mse': loss_mse}, predictor) loss_adv = F.sum(F.softplus(-d_fake)) / (b * w * h) chainer.report({'adversarial': loss_adv}, predictor) loss = self.loss_config.mse * loss_mse + self.loss_config.adversarial * loss_adv chainer.report({'loss': loss}, predictor) return loss
Example #9
Source File: updater.py From become-yukarin with MIT License | 5 votes |
def _loss_predictor(self, predictor, output, target, d_fake): b, _, t = d_fake.data.shape loss_mse = (F.mean_absolute_error(output, target)) chainer.report({'mse': loss_mse}, predictor) loss_adv = F.sum(F.softplus(-d_fake)) / (b * t) chainer.report({'adversarial': loss_adv}, predictor) loss = self.loss_config.mse * loss_mse + self.loss_config.adversarial * loss_adv chainer.report({'loss': loss}, predictor) return loss
Example #10
Source File: net.py From chainer-gan-lib with MIT License | 5 votes |
def __call__(self, x): h = x h = F.leaky_relu(self.c0(h)) h = F.leaky_relu(self.c1(h)) h = F.leaky_relu(self.c2(h)) h = F.leaky_relu(self.c3(h)) h = F.leaky_relu(self.l4(h)) h = F.reshape(F.leaky_relu(self.l5(h)), (x.data.shape[0], self.ch, 4, 4)) h = F.leaky_relu(self.dc3(h)) h = F.leaky_relu(self.dc2(h)) h = F.leaky_relu(self.dc1(h)) h = F.tanh(self.dc0(h)) return F.mean_absolute_error(h, x)
Example #11
Source File: updater.py From chainer-cyclegan with MIT License | 5 votes |
def loss_func_rec_l1(x_out, t): return F.mean_absolute_error(x_out, t)
Example #12
Source File: updater.py From pfio with MIT License | 5 votes |
def loss_dec(self, dec, x_out, t_out, y_out, lam1=100, lam2=1): batchsize, _, w, h = y_out.data.shape loss_rec = lam1*(F.mean_absolute_error(x_out, t_out)) loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h loss = loss_rec + loss_adv chainer.report({'loss': loss}, dec) return loss
Example #13
Source File: updater.py From Deep_VoiceChanger with MIT License | 5 votes |
def gene_update_half(self, a): if a: itr_x = self.itr_a itr_y = self.itr_b gene_xy = self.generator_ab gene_yx = self.generator_ba disc = self.discriminator_b opt = self.opt_g_a else: itr_x = self.itr_b itr_y = self.itr_a gene_xy = self.generator_ba gene_yx = self.generator_ab disc = self.discriminator_a opt = self.opt_g_b x = Variable(self.converter(itr_x.next(), self.device)) y = Variable(self.converter(itr_y.next(), self.device)) xy = gene_xy(x) xyx = gene_yx(xy) yy = gene_xy(y) xy_disc = disc(xy) recon_loss = F.mean_absolute_error(x, xyx) gan_loss = self.loss_hinge_gene(xy_disc) ident_loss = F.mean_absolute_error(y, yy) loss_gene = recon_loss*3.0 + gan_loss + ident_loss*0.5 gene_xy.cleargrads() loss_gene.backward() opt.update() chainer.reporter.report({ 'loss/g/recon': recon_loss, 'loss/g/ident': ident_loss, 'loss/g/gene': gan_loss})
Example #14
Source File: test_mean_absolute_error.py From chainer with MIT License | 5 votes |
def test_invalid_dtype2(self): x0 = chainer.Variable( numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.float32)) x1 = chainer.Variable( numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.float16)) with self.assertRaises(type_check.InvalidType): functions.mean_absolute_error(x0, x1) # See chainer#6702.
Example #15
Source File: test_mean_absolute_error.py From chainer with MIT License | 5 votes |
def test_invalid_dtype1(self): x0 = chainer.Variable( numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.int32)) x1 = chainer.Variable( numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.int32)) with self.assertRaises(type_check.InvalidType): functions.mean_absolute_error(x0, x1)
Example #16
Source File: test_mean_absolute_error.py From chainer with MIT License | 5 votes |
def forward(self, inputs, device): x0, x1 = inputs loss = functions.mean_absolute_error(x0, x1) return loss,
Example #17
Source File: updater.py From chainer with MIT License | 5 votes |
def loss_dec(self, dec, x_out, t_out, y_out, lam1=100, lam2=1): batchsize, _, w, h = y_out.shape loss_rec = lam1*(F.mean_absolute_error(x_out, t_out)) loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h loss = loss_rec + loss_adv chainer.report({'loss': loss}, dec) return loss
Example #18
Source File: updater.py From chainer with MIT License | 5 votes |
def loss_enc(self, enc, x_out, t_out, y_out, lam1=100, lam2=1): batchsize, _, w, h = y_out.shape loss_rec = lam1*(F.mean_absolute_error(x_out, t_out)) loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h loss = loss_rec + loss_adv chainer.report({'loss': loss}, enc) return loss
Example #19
Source File: updater.py From chainer-partial_convolution_image_inpainting with MIT License | 5 votes |
def calc_loss_tv(Icomp, mask, xp=np): canvas = mask.data canvas[:,:,:,:-1] += mask.data[:,:,:,1:] #mask left overlap canvas[:,:,:,1:] += mask.data[:,:,:,:-1] #mask right overlap canvas[:,:,:-1,:] += mask.data[:,:,1:,:] #mask up overlap canvas[:,:,1:,:] += mask.data[:,:,:-1,:] #mask bottom overlap P = Variable((xp.sign(canvas-0.5)+1.0)*0.5) #P region (hole mask: 1 pixel dilated region from hole) return F.mean_absolute_error(P[:,:,:,1:]*Icomp[:,:,:,1:],P[:,:,:,:-1]*Icomp[:,:,:,:-1])+ F.mean_absolute_error(P[:,:,1:,:]*Icomp[:,:,1:,:],P[:,:,:-1,:]*Icomp[:,:,:-1,:])
Example #20
Source File: updater.py From chainer-partial_convolution_image_inpainting with MIT License | 5 votes |
def calc_loss_perceptual(hout_dict,hcomp_dict,hgt_dict): layers = list(hout_dict.keys()) layer_name = layers[0] loss = F.mean_absolute_error(hout_dict[layer_name],hgt_dict[layer_name]) loss += F.mean_absolute_error(hcomp_dict[layer_name],hgt_dict[layer_name]) for layer_name in layers[1:]: loss += F.mean_absolute_error(hout_dict[layer_name],hgt_dict[layer_name]) loss += F.mean_absolute_error(hcomp_dict[layer_name],hgt_dict[layer_name]) return loss
Example #21
Source File: updater.py From Deep_VoiceChanger with MIT License | 5 votes |
def gene_update_full(self): a = Variable(self.converter(self.itr_a.next(), self.device)) b = Variable(self.converter(self.itr_b.next(), self.device)) ab = self.generator_ab(a) ba = self.generator_ba(b) aba = self.generator_ba(ab) bab = self.generator_ab(ba) aa = self.generator_ba(a) bb = self.generator_ab(b) ab_disc = self.discriminator_b(ab) ba_disc = self.discriminator_a(ba) recon_loss = F.mean_absolute_error(a, aba) + F.mean_absolute_error(b, bab) gan_loss = self.loss_hinge_gene(ab_disc) + self.loss_hinge_gene(ba_disc) ident_loss = F.mean_absolute_error(a, aa) + F.mean_absolute_error(b, bb) loss_gene = recon_loss*3.0 + gan_loss + ident_loss*0.5 self.generator_ab.cleargrads() self.generator_ba.cleargrads() loss_gene.backward() self.opt_g_a.update() self.opt_g_b.update() chainer.reporter.report({ 'loss/g/recon': recon_loss, 'loss/g/ident': ident_loss, 'loss/g/gene': gan_loss})
Example #22
Source File: train_own_dataset.py From chainer-chemistry with MIT License | 4 votes |
def main(): # Parse the arguments. args = parse_arguments() if args.label: labels = args.label class_num = len(labels) if isinstance(labels, list) else 1 else: raise ValueError('No target label was specified.') # Dataset preparation. Postprocessing is required for the regression task. def postprocess_label(label_list): return numpy.asarray(label_list, dtype=numpy.float32) # Apply a preprocessor to the dataset. print('Preprocessing dataset...') preprocessor = preprocess_method_dict[args.method]() parser = CSVFileParser(preprocessor, postprocess_label=postprocess_label, labels=labels, smiles_col='SMILES') dataset = parser.parse(args.datafile)['dataset'] # Scale the label values, if necessary. if args.scale == 'standardize': scaler = StandardScaler() scaler.fit(dataset.get_datasets()[-1]) else: scaler = None # Split the dataset into training and validation. train_data_size = int(len(dataset) * args.train_data_ratio) train, _ = split_dataset_random(dataset, train_data_size, args.seed) # Set up the predictor. predictor = set_up_predictor( args.method, args.unit_num, args.conv_layers, class_num, label_scaler=scaler) # Set up the regressor. device = chainer.get_device(args.device) metrics_fun = {'mae': F.mean_absolute_error, 'rmse': rmse} regressor = Regressor(predictor, lossfun=F.mean_squared_error, metrics_fun=metrics_fun, device=device) print('Training...') converter = converter_method_dict[args.method] run_train(regressor, train, valid=None, batch_size=args.batchsize, epoch=args.epoch, out=args.out, extensions_list=None, device=device, converter=converter, resume_path=None) # Save the regressor's parameters. model_path = os.path.join(args.out, args.model_filename) print('Saving the trained model to {}...'.format(model_path)) # TODO(nakago): ChainerX array cannot be sent to numpy array when internal # state has gradients. if hasattr(regressor.predictor.graph_conv, 'reset_state'): regressor.predictor.graph_conv.reset_state() regressor.save_pickle(model_path, protocol=args.protocol)
Example #23
Source File: updater.py From chainer-partial_convolution_image_inpainting with MIT License | 4 votes |
def update_core(self): xp = self.model.xp self._iter += 1 batch = self.get_iterator('main').next() #img_processed (B,4,H,W), origin (B,3,H,W), mask (B,1,H,W) batchsize = len(batch) w_in = self._image_size zero_f = Variable(xp.zeros((batchsize, 3, w_in, w_in)).astype("f")) x_train = np.zeros((batchsize, 3, w_in, w_in)).astype("f") mask_train = np.zeros((batchsize, 3, w_in, w_in)).astype("f") for i in range(batchsize): x_train[i, :] = batch[i][0] #original image mask_train[i, :] = batch[i][1] #0-1 mask of c x_train = xp.array(x_train) mask_train = xp.array(mask_train) mask_b = xp.array(mask_train.astype("bool")) I_gt = Variable(x_train) M = Variable(mask_train) M_b = Variable(mask_b) I_out = self.model(I_gt,M) I_comp = F.where(M_b,I_gt,I_out) #if an element of Mc_b is True, return the corresponded element of I_gt, otherwise return that of I_out) fs_I_gt = vgg_extract(self.vgg,I_gt) #feature dict fs_I_out = vgg_extract(self.vgg,I_out) #feature dict fs_I_comp = vgg_extract(self.vgg,I_comp) #feature dict opt_model = self.get_optimizer('model') L_valid = F.mean_absolute_error(M*I_out,M*I_gt) L_hole = F.mean_absolute_error((1-M)*I_out,(1-M)*I_gt) L_perceptual = calc_loss_perceptual(fs_I_gt,fs_I_out,fs_I_comp) L_style = calc_loss_style(fs_I_out,fs_I_comp,fs_I_gt) #Loss style out and comp L_tv = calc_loss_tv(I_comp, M, xp=xp) L_total = L_valid + self._lambda1 * L_hole + self._lambda2 * L_perceptual + \ self._lambda3 * L_style + self._lambda4 * L_tv self.vgg.cleargrads() self.model.cleargrads() L_total.backward() opt_model.update() chainer.report({'L_valid': L_valid}) chainer.report({'L_hole': L_hole}) chainer.report({'L_perceptual': L_perceptual}) chainer.report({'L_style': L_style}) chainer.report({'L_tv': L_tv})