Python chainer.functions.clipped_relu() Examples

The following are 10 code examples of chainer.functions.clipped_relu(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module chainer.functions , or try the search function .
Example #1
Source File: basic_cnn_tail.py    From SeRanet with MIT License 6 votes vote down vote up
def __call__(self, x, t=None):
        self.clear()
        #x = Variable(x_data)  # x_data.astype(np.float32)

        h = F.leaky_relu(self.conv1(x), slope=0.1)
        h = F.leaky_relu(self.conv2(h), slope=0.1)
        h = F.leaky_relu(self.conv3(h), slope=0.1)
        h = F.leaky_relu(self.conv4(h), slope=0.1)
        h = F.leaky_relu(self.conv5(h), slope=0.1)
        h = F.leaky_relu(self.conv6(h), slope=0.1)
        h = F.clipped_relu(self.conv7(h), z=1.0)
        if self.train:
            self.loss = F.mean_squared_error(h, t)
            return self.loss
        else:
            return h 
Example #2
Source File: test_clipped_relu.py    From chainer with MIT License 5 votes vote down vote up
def forward(self, inputs, device):
        x, = inputs
        y = functions.clipped_relu(x, self.z)
        return y, 
Example #3
Source File: test_clipped_relu.py    From chainer with MIT License 5 votes vote down vote up
def forward(self):
        x = chainer.Variable(self.x)
        return functions.clipped_relu(x, self.z) 
Example #4
Source File: basic_cnn_small.py    From SeRanet with MIT License 5 votes vote down vote up
def __call__(self, x, t=None):
        self.clear()

        h = F.leaky_relu(self.conv1(x), slope=0.1)
        h = F.leaky_relu(self.conv2(h), slope=0.1)
        #h = F.leaky_relu(self.conv3(h), slope=0.1)
        #h = F.leaky_relu(self.conv4(h), slope=0.1)
        h = F.clipped_relu(self.conv3(h), z=1.0)
        if self.train:
            self.loss = F.mean_squared_error(h, t)
            return self.loss
        else:
            return h 
Example #5
Source File: seranet_v1.py    From SeRanet with MIT License 5 votes vote down vote up
def __call__(self, x, t=None):
        self.clear()
        h1 = F.leaky_relu(self.conv1(x), slope=0.1)
        h1 = F.leaky_relu(self.conv2(h1), slope=0.1)
        h1 = F.leaky_relu(self.conv3(h1), slope=0.1)

        h2 = self.seranet_v1_crbm(x)
        # Fusion
        h12 = F.concat((h1, h2), axis=1)

        lu = F.leaky_relu(self.convlu6(h12), slope=0.1)
        lu = F.leaky_relu(self.convlu7(lu), slope=0.1)
        lu = F.leaky_relu(self.convlu8(lu), slope=0.1)
        ru = F.leaky_relu(self.convru6(h12), slope=0.1)
        ru = F.leaky_relu(self.convru7(ru), slope=0.1)
        ru = F.leaky_relu(self.convru8(ru), slope=0.1)
        ld = F.leaky_relu(self.convld6(h12), slope=0.1)
        ld = F.leaky_relu(self.convld7(ld), slope=0.1)
        ld = F.leaky_relu(self.convld8(ld), slope=0.1)
        rd = F.leaky_relu(self.convrd6(h12), slope=0.1)
        rd = F.leaky_relu(self.convrd7(rd), slope=0.1)
        rd = F.leaky_relu(self.convrd8(rd), slope=0.1)

        # Splice
        h = CF.splice(lu, ru, ld, rd)

        h = F.leaky_relu(self.conv9(h), slope=0.1)
        h = F.leaky_relu(self.conv10(h), slope=0.1)
        h = F.leaky_relu(self.conv11(h), slope=0.1)
        h = F.clipped_relu(self.conv12(h), z=1.0)
        if self.train:
            self.loss = F.mean_squared_error(h, t)
            return self.loss
        else:
            return h 
Example #6
Source File: basic_cnn_head.py    From SeRanet with MIT License 5 votes vote down vote up
def __call__(self, x, t=None):
        self.clear()

        h = F.leaky_relu(self.conv1(x), slope=0.1)
        h = F.leaky_relu(self.conv2(h), slope=0.1)
        h = F.leaky_relu(self.conv3(h), slope=0.1)
        h = F.leaky_relu(self.conv4(h), slope=0.1)
        h = F.leaky_relu(self.conv5(h), slope=0.1)
        h = F.leaky_relu(self.conv6(h), slope=0.1)
        h = F.clipped_relu(self.conv7(h), z=1.0)
        if self.train:
            self.loss = F.mean_squared_error(h, t)
            return self.loss
        else:
            return h 
Example #7
Source File: basic_cnn_middle.py    From SeRanet with MIT License 5 votes vote down vote up
def __call__(self, x, t=None):
        self.clear()

        h = F.leaky_relu(self.conv1(x), slope=0.1)
        h = F.leaky_relu(self.conv2(h), slope=0.1)
        h = F.leaky_relu(self.conv3(h), slope=0.1)
        h = F.leaky_relu(self.conv4(h), slope=0.1)
        h = F.leaky_relu(self.conv5(h), slope=0.1)
        h = F.leaky_relu(self.conv6(h), slope=0.1)
        h = F.clipped_relu(self.conv7(h), z=1.0)
        if self.train:
            self.loss = F.mean_squared_error(h, t)
            return self.loss
        else:
            return h 
Example #8
Source File: net.py    From PredNet with Apache License 2.0 5 votes vote down vote up
def __call__(self, x):
        for nth in range(self.layers):
            if getattr(self, 'P' + str(nth)) is None:
                setattr(self, 'P' + str(nth), variable.Variable(
                    self.xp.zeros(self.sizes[nth], dtype=x.data.dtype),
                    volatile='auto'))

        E = [None] * self.layers
        for nth in range(self.layers):
            if nth == 0:
                E[nth] = F.concat((F.relu(x - getattr(self, 'P' + str(nth))),
                                  F.relu(getattr(self, 'P' + str(nth)) - x)))
            else:
                A = F.max_pooling_2d(F.relu(getattr(self, 'ConvA' + str(nth))(E[nth - 1])), 2, stride = 2)
                E[nth] = F.concat((F.relu(A - getattr(self, 'P' + str(nth))),
                                  F.relu(getattr(self, 'P' + str(nth)) - A)))

        R = [None] * self.layers
        for nth in reversed(range(self.layers)):
            if nth == self.layers - 1:
                R[nth] = getattr(self, 'ConvLSTM' + str(nth))((E[nth],))
            else:
                upR = F.unpooling_2d(R[nth + 1], 2, stride = 2, cover_all=False)
                R[nth] = getattr(self, 'ConvLSTM' + str(nth))((E[nth], upR))

            if nth == 0:
                setattr(self, 'P' + str(nth), F.clipped_relu(getattr(self, 'ConvP' + str(nth))(R[nth]), 1.0))
            else:
                setattr(self, 'P' + str(nth), F.relu(getattr(self, 'ConvP' + str(nth))(R[nth])))
        
        return self.P0 
Example #9
Source File: expanded_conv_2d.py    From chainercv with MIT License 4 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 expansion_size=expand_input_by_factor(6),
                 expand_pad='SAME',
                 depthwise_stride=1,
                 depthwise_ksize=3,
                 depthwise_pad='SAME',
                 project_pad='SAME',
                 initialW=None,
                 bn_kwargs={}):
        super(ExpandedConv2D, self).__init__()
        with self.init_scope():
            if callable(expansion_size):
                self.inner_size = expansion_size(num_inputs=in_channels)
            else:
                self.inner_size = expansion_size

            def relu6(x):
                return clipped_relu(x, 6.)
            if self.inner_size > in_channels:
                self.expand = TFConv2DBNActiv(
                    in_channels,
                    self.inner_size,
                    ksize=1,
                    pad=expand_pad,
                    nobias=True,
                    initialW=initialW,
                    bn_kwargs=bn_kwargs,
                    activ=relu6)
                depthwise_in_channels = self.inner_size
            else:
                depthwise_in_channels = in_channels
            self.depthwise = TFConv2DBNActiv(
                depthwise_in_channels,
                self.inner_size,
                ksize=depthwise_ksize,
                stride=depthwise_stride,
                pad=depthwise_pad,
                nobias=True,
                initialW=initialW,
                groups=depthwise_in_channels,
                bn_kwargs=bn_kwargs,
                activ=relu6)
            self.project = TFConv2DBNActiv(
                self.inner_size,
                out_channels,
                ksize=1,
                pad=project_pad,
                nobias=True,
                initialW=initialW,
                bn_kwargs=bn_kwargs,
                activ=None) 
Example #10
Source File: model.py    From brain_segmentation with MIT License 4 votes vote down vote up
def __call__(self, x, train=False):
        """
        calculate output of VoxResNet given input x

        Parameters
        ----------
        x : (batch_size, in_channels, xlen, ylen, zlen) ndarray
            image to perform semantic segmentation

        Returns
        -------
        proba: (batch_size, n_classes, xlen, ylen, zlen) ndarray
            probability of each voxel belonging each class
            elif train=True, returns list of logits
        """
        with chainer.using_config("train", train):
            h = self.conv1a(x)
            h = F.relu(self.bnorm1a(h))
            h = self.conv1b(h)
            c1 = F.clipped_relu(self.c1deconv(h))
            c1 = self.c1conv(c1)

            h = F.relu(self.bnorm1b(h))
            h = self.conv1c(h)
            h = self.voxres2(h)
            h = self.voxres3(h)
            c2 = F.clipped_relu(self.c2deconv(h))
            c2 = self.c2conv(c2)

            h = F.relu(self.bnorm3(h))
            h = self.conv4(h)
            h = self.voxres5(h)
            h = self.voxres6(h)
            c3 = F.clipped_relu(self.c3deconv(h))
            c3 = self.c3conv(c3)

            h = F.relu(self.bnorm6(h))
            h = self.conv7(h)
            h = self.voxres8(h)
            h = self.voxres9(h)
            c4 = F.clipped_relu(self.c4deconv(h))
            c4 = self.c4conv(c4)

            c = c1 + c2 + c3 + c4

        if train:
            return [c1, c2, c3, c4, c]
        else:
            return F.softmax(c)