Python chainer.functions.max_pooling_2d() Examples
The following are 30
code examples of chainer.functions.max_pooling_2d().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.functions
, or try the search function
.
Example #1
Source File: wrn.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels): super(WRNInitBlock, self).__init__() with self.init_scope(): self.conv = WRNConv( in_channels=in_channels, out_channels=out_channels, ksize=7, stride=2, pad=3, activate=True) self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #2
Source File: dpn.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize, pad): super(DPNInitBlock, self).__init__() with self.init_scope(): self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=2, pad=pad, nobias=True) self.bn = dpn_batch_norm(channels=out_channels) self.activ = F.relu self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #3
Source File: Alex.py From chainer-compiler with MIT License | 6 votes |
def forward(self, x, t): # def forward(self, x): h = F.max_pooling_2d(F.local_response_normalization( F.relu(self.conv1(x))), 3, stride=2) h = F.max_pooling_2d(F.local_response_normalization( F.relu(self.conv2(h))), 3, stride=2) h = F.relu(self.conv3(h)) h = F.relu(self.conv4(h)) h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2) h = F.dropout(F.relu(self.fc6(h))) h = F.dropout(F.relu(self.fc7(h))) h = self.fc8(h) loss = F.softmax_cross_entropy(h, t) #loss = h # chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self) return loss
Example #4
Source File: Alex_with_loss.py From chainer-compiler with MIT License | 6 votes |
def forward(self, x, t): # def forward(self, x): h = F.max_pooling_2d(F.local_response_normalization( F.relu(self.conv1(x))), 3, stride=2) h = F.max_pooling_2d(F.local_response_normalization( F.relu(self.conv2(h))), 3, stride=2) h = F.relu(self.conv3(h)) h = F.relu(self.conv4(h)) h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2) h = F.dropout(F.relu(self.fc6(h))) h = F.dropout(F.relu(self.fc7(h))) h = self.fc8(h) loss = F.softmax_cross_entropy(h, t) #loss = h # chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self) return loss # from https://github.com/chainer/chainer/blob/master/examples/imagenet/alex.py
Example #5
Source File: GoogleNet_with_loss.py From chainer-compiler with MIT License | 6 votes |
def forward(self, x): """Computes the output of the Inception module. Args: x (~chainer.Variable): Input variable. Returns: Variable: Output variable. Its array has the same spatial size and the same minibatch size as the input array. The channel dimension has size ``out1 + out3 + out5 + proj_pool``. """ out1 = self.conv1(x) out3 = self.conv3(relu.relu(self.proj3(x))) out5 = self.conv5(relu.relu(self.proj5(x))) pool = self.projp(F.max_pooling_2d( x, 3, stride=1, pad=1)) y = relu.relu(concat.concat((out1, out3, out5, pool), axis=1)) return y
Example #6
Source File: GoogleNet.py From chainer-compiler with MIT License | 6 votes |
def forward(self, x): """Computes the output of the Inception module. Args: x (~chainer.Variable): Input variable. Returns: Variable: Output variable. Its array has the same spatial size and the same minibatch size as the input array. The channel dimension has size ``out1 + out3 + out5 + proj_pool``. """ out1 = self.conv1(x) out3 = self.conv3(relu.relu(self.proj3(x))) out5 = self.conv5(relu.relu(self.proj5(x))) pool = self.projp(F.max_pooling_2d( x, 3, stride=1, pad=1)) y = relu.relu(concat.concat((out1, out3, out5, pool), axis=1)) return y
Example #7
Source File: airnet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels): super(AirInitBlock, self).__init__() mid_channels = out_channels // 2 with self.init_scope(): self.conv1 = conv3x3_block( in_channels=in_channels, out_channels=mid_channels, stride=2) self.conv2 = conv3x3_block( in_channels=mid_channels, out_channels=mid_channels) self.conv3 = conv3x3_block( in_channels=mid_channels, out_channels=out_channels) self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #8
Source File: diracnetv2.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels): super(DiracInitBlock, self).__init__() with self.init_scope(): self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=7, stride=2, pad=3, nobias=False) self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #9
Source File: shufflenet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels): super(ShuffleInitBlock, self).__init__() with self.init_scope(): self.conv = conv3x3( in_channels=in_channels, out_channels=out_channels, stride=2) self.bn = L.BatchNormalization(size=out_channels) self.activ = F.relu self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #10
Source File: spp_discriminator.py From Semantic-Segmentation-using-Adversarial-Networks with MIT License | 6 votes |
def __call__(self, x): h = F.relu(self.conv1_1(x)) h = F.relu(self.conv1_2(h)) h = F.max_pooling_2d(h, 2, stride=2) h = F.relu(self.conv2_1(h)) h = F.relu(self.conv2_2(h)) h = F.max_pooling_2d(h, 2, stride=2) h = F.relu(self.conv3_1(h)) h = F.relu(self.conv3_2(h)) h = F.max_pooling_2d(h, 2, stride=2) h = F.relu(self.conv4_1(h)) h = F.relu(self.conv4_2(h)) h = F.spatial_pyramid_pooling_2d(h, 3, F.MaxPooling2D) h = F.tanh(self.fc4(h)) h = F.dropout(h, ratio=.5, train=self.train) h = F.tanh(self.fc5(h)) h = F.dropout(h, ratio=.5, train=self.train) h = self.fc6(h) return h
Example #11
Source File: darts.py From imgclsmob with MIT License | 6 votes |
def darts_maxpool3x3(channels, stride): """ DARTS specific 3x3 Max pooling layer. Parameters: ---------- channels : int Number of input/output channels. Unused parameter. stride : int or tuple/list of 2 int Stride of the convolution. """ assert (channels > 0) return partial( F.max_pooling_2d, ksize=3, stride=stride, pad=1, cover_all=False)
Example #12
Source File: preresnet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels): super(PreResInitBlock, self).__init__() with self.init_scope(): self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=7, stride=2, pad=3, nobias=True) self.bn = L.BatchNormalization(size=out_channels) self.activ = F.relu self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #13
Source File: squeezenext.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels): super(SqnxtInitBlock, self).__init__() with self.init_scope(): self.conv = conv7x7_block( in_channels=in_channels, out_channels=out_channels, stride=2, pad=1, use_bias=True) self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, cover_all=False)
Example #14
Source File: MnihCNN_cis.py From ssai-cnn with MIT License | 6 votes |
def __call__(self, x, t): h = F.relu(self.conv1(x)) h = F.max_pooling_2d(h, 2, 1) h = F.relu(self.conv2(h)) h = F.relu(self.conv3(h)) h = F.dropout(F.relu(self.fc4(h)), train=self.train) h = self.fc5(h) h = F.reshape(h, (x.data.shape[0], 3, 16, 16)) h = self.channelwise_inhibited(h) if self.train: self.loss = F.softmax_cross_entropy(h, t, normalize=False) return self.loss else: self.pred = F.softmax(h) return self.pred
Example #15
Source File: pyramidnet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels): super(PyrInitBlock, self).__init__() with self.init_scope(): self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=7, stride=2, pad=3, nobias=True) self.bn = L.BatchNormalization( size=out_channels, eps=1e-5) self.activ = F.relu self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #16
Source File: fishnet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels_list): super(DownUnit, self).__init__() with self.init_scope(): self.blocks = SimpleSequential() with self.blocks.init_scope(): for i, out_channels in enumerate(out_channels_list): setattr(self.blocks, "block{}".format(i + 1), FishBlock( in_channels=in_channels, out_channels=out_channels)) in_channels = out_channels self.pool = partial( F.max_pooling_2d, ksize=2, stride=2, cover_all=False)
Example #17
Source File: senet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels): super(SEInitBlock, self).__init__() mid_channels = out_channels // 2 with self.init_scope(): self.conv1 = conv3x3_block( in_channels=in_channels, out_channels=mid_channels, stride=2) self.conv2 = conv3x3_block( in_channels=mid_channels, out_channels=mid_channels) self.conv3 = conv3x3_block( in_channels=mid_channels, out_channels=out_channels) self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #18
Source File: fpn.py From chainer-compiler with MIT License | 6 votes |
def forward(self, x): hs = self.base(x) with flags.for_unroll(): for i in range(self.n_base_output_minus1, -1, -1): hs[i] = self.inner[i](hs[i]) if i < self.n_base_output_minus1: hs[i] += F.unpooling_2d(hs[i + 1], 2, cover_all=False) for i in range(self.n_base_output): hs[i] = self.outer[i](hs[i]) for _ in range(self.scales_minus_n_base_output): hs.append(F.max_pooling_2d(hs[-1], 1, stride=2, cover_all=False)) return hs # ======================================
Example #19
Source File: FCN_32s.py From ssai-cnn with MIT License | 6 votes |
def __call__(self, x, t): h = F.relu(self.conv1_1(x)) h = F.relu(self.conv1_2(h)) h = F.max_pooling_2d(h, 2, 2) h = F.relu(self.conv2_1(h)) h = F.relu(self.conv2_2(h)) h = F.max_pooling_2d(h, 2, 2) h = F.relu(self.conv3_1(h)) h = F.relu(self.conv3_2(h)) h = F.relu(self.conv3_3(h)) h = F.max_pooling_2d(h, 2, 2) h = F.relu(self.conv4_1(h)) h = F.relu(self.conv4_2(h)) h = F.relu(self.conv4_3(h)) h = F.max_pooling_2d(h, 2, 2) h = F.relu(self.conv5_1(h)) h = F.relu(self.conv5_2(h)) h = F.relu(self.conv5_3(h)) h = F.max_pooling_2d(h, 2, 2) h = F.dropout(F.relu(self.fc6(h)), ratio=0.5, train=self.train) h = F.dropout(F.relu(self.fc7(h)), ratio=0.5, train=self.train) h = self.score_fr(h) h = self.upsample(h) return h
Example #20
Source File: resnet50.py From chainer-compiler with MIT License | 6 votes |
def forward(self, x, t): h = self.bn1(self.conv1(x)) h = F.max_pooling_2d(F.relu(h), 3, stride=2) h = self.res2(h) h = self.res3(h) h = self.res4(h) h = self.res5(h) h = F.average_pooling_2d(h, 7, stride=1) h = self.fc(h) #loss = F.softmax_cross_entropy(h, t) loss = self.softmax_cross_entropy(h, t) if self.compute_accuracy: chainer.report({'loss': loss, 'accuracy': F.accuracy(h, np.argmax(t, axis=1))}, self) else: chainer.report({'loss': loss}, self) return loss
Example #21
Source File: alex.py From chainer-compiler with MIT License | 6 votes |
def forward(self, x, t): h = F.max_pooling_2d(F.local_response_normalization( F.relu(self.conv1(x))), 3, stride=2) h = F.max_pooling_2d(F.local_response_normalization( F.relu(self.conv2(h))), 3, stride=2) h = F.relu(self.conv3(h)) h = F.relu(self.conv4(h)) h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2) h = F.dropout(F.relu(self.fc6(h))) h = F.dropout(F.relu(self.fc7(h))) h = self.fc8(h) # EDIT(hamaji): ONNX-chainer cannot output SoftmaxCrossEntropy. # loss = F.softmax_cross_entropy(h, t) loss = self.softmax_cross_entropy(h, t) if self.compute_accuracy: chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self) else: chainer.report({'loss': loss}, self) return loss
Example #22
Source File: bninception.py From imgclsmob with MIT License | 5 votes |
def __init__(self, in_channels, mid1_channels_list, mid2_channels_list, use_bias, use_bn): super(ReductionBlock, self).__init__() assert (len(mid1_channels_list) == 2) assert (len(mid2_channels_list) == 4) with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", Inception3x3Branch( in_channels=in_channels, out_channels=mid2_channels_list[1], mid_channels=mid1_channels_list[0], stride=2, use_bias=use_bias, use_bn=use_bn)) setattr(self.branches, "branch2", InceptionDouble3x3Branch( in_channels=in_channels, out_channels=mid2_channels_list[2], mid_channels=mid1_channels_list[1], stride=2, use_bias=use_bias, use_bn=use_bn)) setattr(self.branches, "branch3", partial( F.max_pooling_2d, ksize=3, stride=2, pad=0, cover_all=True))
Example #23
Source File: vgg.py From imgclsmob with MIT License | 5 votes |
def __init__(self, channels, use_bias=True, use_bn=False, in_channels=3, in_size=(224, 224), classes=1000): super(VGG, self).__init__() self.in_size = in_size self.classes = classes with self.init_scope(): self.features = SimpleSequential() with self.features.init_scope(): for i, channels_per_stage in enumerate(channels): stage = SimpleSequential() with stage.init_scope(): for j, out_channels in enumerate(channels_per_stage): setattr(stage, "unit{}".format(j + 1), conv3x3_block( in_channels=in_channels, out_channels=out_channels, use_bias=use_bias, use_bn=use_bn)) in_channels = out_channels setattr(stage, "pool{}".format(i + 1), partial( F.max_pooling_2d, ksize=2, stride=2, pad=0)) setattr(self.features, "stage{}".format(i + 1), stage) in_channels = in_channels * 7 * 7 self.output = SimpleSequential() with self.output.init_scope(): setattr(self.output, "flatten", partial( F.reshape, shape=(-1, in_channels))) setattr(self.output, 'classifier', VGGOutputBlock( in_channels=in_channels, classes=classes))
Example #24
Source File: dpn.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): batch, channels, height, width = x.shape x_avg = F.average_pooling_2d(x, ksize=(height, width)) x_max = F.max_pooling_2d(x, ksize=(height, width), cover_all=False) x = 0.5 * (x_avg + x_max) return x
Example #25
Source File: inceptionv4.py From imgclsmob with MIT License | 5 votes |
def __init__(self): super(MaxPoolBranch, self).__init__() with self.init_scope(): self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=0, cover_all=False)
Example #26
Source File: vovnet.py From imgclsmob with MIT License | 5 votes |
def __init__(self, in_channels, out_channels, branch_channels, num_branches, resize, use_residual): super(VoVUnit, self).__init__() self.resize = resize self.use_residual = use_residual with self.init_scope(): if self.resize: self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, cover_all=True) self.branches = SequentialConcurrent() with self.branches.init_scope(): branch_in_channels = in_channels for i in range(num_branches): setattr(self.branches, "branch{}".format(i + 1), conv3x3_block( in_channels=branch_in_channels, out_channels=branch_channels)) branch_in_channels = branch_channels self.concat_conv = conv1x1_block( in_channels=(in_channels + num_branches * branch_channels), out_channels=out_channels)
Example #27
Source File: dla.py From imgclsmob with MIT License | 5 votes |
def __init__(self, in_channels, out_channels, stride, body_class=ResBlock, return_down=False): super(DLAResBlock, self).__init__() self.return_down = return_down self.downsample = (stride > 1) self.project = (in_channels != out_channels) with self.init_scope(): self.body = body_class( in_channels=in_channels, out_channels=out_channels, stride=stride) self.activ = F.relu if self.downsample: self.downsample_pool = partial( F.max_pooling_2d, ksize=stride, stride=stride, cover_all=False) if self.project: self.project_conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels, activation=None)
Example #28
Source File: pnasnet.py From imgclsmob with MIT License | 5 votes |
def __init__(self, stride=2, extra_padding=False): super(PnasMaxPoolBlock, self).__init__() self.extra_padding = extra_padding with self.init_scope(): self.pool = partial( F.max_pooling_2d, ksize=3, stride=stride, pad=1, cover_all=False)
Example #29
Source File: shufflenetv2b.py From imgclsmob with MIT License | 5 votes |
def __init__(self, in_channels, out_channels): super(ShuffleInitBlock, self).__init__() with self.init_scope(): self.conv = conv3x3_block( in_channels=in_channels, out_channels=out_channels, stride=2) self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=1, cover_all=False)
Example #30
Source File: polynet.py From imgclsmob with MIT License | 5 votes |
def __init__(self): super(MaxPoolBranch, self).__init__() with self.init_scope(): self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=0, cover_all=False)