Python chainer.functions.sigmoid() Examples
The following are 30
code examples of chainer.functions.sigmoid().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.functions
, or try the search function
.
Example #1
Source File: multi_label_classifier.py From models with MIT License | 6 votes |
def calc_accuracy(pred_scores, gt_labels): # https://arxiv.org/pdf/1612.03663.pdf # end of section 3.1 pred_probs = F.sigmoid(pred_scores).data accs = [] n_pos = [] n_pred = [] for pred_prob, gt_label in zip(pred_probs, gt_labels): gt_label = chainer.cuda.to_cpu(gt_label) pred_prob = chainer.cuda.to_cpu(pred_prob) pred_label = np.where(pred_prob > 0.5)[0] correct = np.intersect1d(gt_label, pred_label) diff_gt = np.setdiff1d(gt_label, correct) diff_pred = np.setdiff1d(pred_label, correct) accs.append( len(correct) / (len(correct) + len(diff_gt) + len(diff_pred))) n_pos.append(len(gt_label)) n_pred.append(len(pred_label)) return { 'accuracy': np.mean(accs), 'n_pos': np.mean(n_pos), 'n_pred': np.mean(n_pred)}
Example #2
Source File: test_replace_func.py From chainer with MIT License | 6 votes |
def test_fake_as_funcnode_without_replace(): class Model(chainer.Chain): def _init__(self): super().__init__() def add(self, xs, value=0.01): return xs.array + value def __call__(self, xs): return F.sigmoid(self.add(xs)) model = Model() x = input_generator.increasing(3, 4) onnx_model = export(model, x) sigmoid_nodes = [ node for node in onnx_model.graph.node if node.op_type == 'Sigmoid'] assert len(sigmoid_nodes) == 1 # sigmoid node should be expected to connect with input # but the connection is cut because `add` method takes array. assert not sigmoid_nodes[0].input[0] == 'Input_0'
Example #3
Source File: centernet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, do_nms, **kwargs): super(CenterNetHeatmapBlock, self).__init__(**kwargs) self.do_nms = do_nms with self.init_scope(): self.head = CenterNetHeadBlock( in_channels=in_channels, out_channels=out_channels) self.sigmoid = F.sigmoid if self.do_nms: self.pool = partial( F.max_pooling_2d, ksize=3, stride=1, pad=1, cover_all=False)
Example #4
Source File: sinet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, channels, reduction=16, round_mid=False, mid_activation=(lambda: F.relu), out_activation=(lambda: F.sigmoid)): super(SEBlock, self).__init__() self.use_conv2 = (reduction > 1) mid_channels = channels // reduction if not round_mid else round_channels(float(channels) / reduction) with self.init_scope(): self.fc1 = L.Linear( in_size=channels, out_size=mid_channels) if self.use_conv2: self.activ = get_activation_layer(mid_activation) self.fc2 = L.Linear( in_size=mid_channels, out_size=channels) self.sigmoid = get_activation_layer(out_activation)
Example #5
Source File: faster_gru.py From knmt with GNU General Public License v3.0 | 6 votes |
def faster_call2(self, h, x): r_z_h_x = self.W_r_z_h(x) r_z_h = self.U_r_z(h) r_x, z_x, h_x = split_axis(r_z_h_x, (self.n_units, self.n_units * 2), axis=1) assert r_x.data.shape[1] == self.n_units assert z_x.data.shape[1] == self.n_units assert h_x.data.shape[1] == self.n_units r_h, z_h = split_axis(r_z_h, (self.n_units,), axis=1) # r = sigmoid.sigmoid(r_x + r_h) # z = sigmoid.sigmoid(z_x + z_h) # h_bar = tanh.tanh(h_x + self.U(sigm_a_plus_b_by_h(r_x, r_h, h))) # h_new = (1 - z) * h + z * h_bar # return h_new return compute_output_GRU(z_x, z_h, h_x, h, self.U(sigm_a_plus_b_by_h_fast(r_x, r_h, h)))
Example #6
Source File: region_loss.py From models with MIT License | 6 votes |
def region_loss(output, gt_points): # rpoints lie in [0, feat_size] # points lie in [0, 1] # anchors = [0.1067, 0.9223] B, C, H, W = output.shape det_confs = F.sigmoid(output[:, 18]) rpoints = output[:, :18].reshape(B, 9, 2, H, W) rpoints0 = F.sigmoid(rpoints[:, 0]) rpoints = F.concat( (rpoints0[:, None], rpoints[:, 1:]), axis=1) rpoints_data = rpoints.data points_data = rpoints_to_points(rpoints_data) gt_rpoints, gt_confs, coord_mask, conf_mask = create_target( points_data, gt_points) point_loss = F.sum( coord_mask[:, None, None] * (rpoints - gt_rpoints) ** 2) / (2 * B) conf_loss = F.sum(conf_mask * (det_confs - gt_confs) ** 2) / (2 * B) return point_loss, conf_loss
Example #7
Source File: eval_voc07.py From models with MIT License | 6 votes |
def __call__(self, imgs): with chainer.using_config('train', False), \ chainer.function.no_backprop_mode(): transform = BatchTransform(self.model.mean) imgs = transform(imgs) imgs = self.model.xp.array(imgs) scores = self.model(imgs) probs = chainer.cuda.to_cpu(F.sigmoid(scores).data) labels = [] scores = [] for prob in probs: label = np.where(prob >= self.thresh)[0] labels.append(label) scores.append(prob[label]) return labels, scores
Example #8
Source File: highway.py From models with MIT License | 6 votes |
def forward(self, inputs): current_input = inputs for layer in self._layers: projected_input = layer(current_input) linear_part = current_input # NOTE: if you modify this, think about whether you should modify the initialization # above, too. nonlinear_part = projected_input[:, (0 * self._input_dim): (1 * self._input_dim)] gate = projected_input[:, (1 * self._input_dim): (2 * self._input_dim)] nonlinear_part = self._activation(nonlinear_part) gate = F.sigmoid(gate) current_input = gate * linear_part + (1 - gate) * nonlinear_part return current_input
Example #9
Source File: net.py From tensorboardX with MIT License | 6 votes |
def get_loss_func(self, C=1.0, k=1): """Get loss function of VAE. The loss value is equal to ELBO (Evidence Lower Bound) multiplied by -1. Args: C (int): Usually this is 1.0. Can be changed to control the second term of ELBO bound, which works as regularization. k (int): Number of Monte Carlo samples used in encoded vector. """ def lf(x): mu, ln_var = self.encode(x) batchsize = len(mu.data) # reconstruction loss rec_loss = 0 for l in six.moves.range(k): z = F.gaussian(mu, ln_var) rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False)) \ / (k * batchsize) self.rec_loss = rec_loss self.loss = self.rec_loss + \ C * gaussian_kl_divergence(mu, ln_var) / batchsize return self.loss return lf
Example #10
Source File: test_replace_func.py From onnx-chainer with MIT License | 6 votes |
def test_fake_as_funcnode_without_replace(): class Model(chainer.Chain): def _init__(self): super().__init__() def add(self, xs, value=0.01): return xs.array + value def __call__(self, xs): return F.sigmoid(self.add(xs)) model = Model() x = input_generator.increasing(3, 4) onnx_model = export(model, x) sigmoid_nodes = [ node for node in onnx_model.graph.node if node.op_type == 'Sigmoid'] assert len(sigmoid_nodes) == 1 # sigmoid node should be expected to connect with input # but the connection is cut because `add` method takes array. assert not sigmoid_nodes[0].input[0] == 'Input_0'
Example #11
Source File: generator.py From chainer-gqn with MIT License | 6 votes |
def __call__(self, prev_hg, prev_cg, prev_z, v, r, prev_u): v = self.broadcast_v(v) if r.shape[2] == 1: r = self.broadcast_r(r) lstm_input = cf.concat((prev_hg, v, r, prev_z), axis=1) gate_inputs = self.lstm(lstm_input) forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis( gate_inputs, 4, axis=1) forget_gate = cf.sigmoid(forget_gate_input) input_gate = cf.sigmoid(input_gate_input) next_c = forget_gate * prev_cg + input_gate * cf.tanh(tanh_input) output_gate = cf.sigmoid(output_gate_input) next_h = output_gate * cf.tanh(next_c) next_u = self.upsample_h(next_h) + prev_u return next_h, next_c, next_u
Example #12
Source File: inference.py From chainer-gqn with MIT License | 6 votes |
def __call__(self, prev_hg, prev_he, prev_ce, x, v, r, u): xu = cf.concat((x, u), axis=1) xu = self.downsample_xu(xu) v = self.broadcast_v(v) if r.shape[2] == 1: r = self.broadcast_r(r) lstm_input = cf.concat((prev_he, prev_hg, xu, v, r), axis=1) gate_inputs = self.lstm(lstm_input) if self.use_cuda_kernel: next_h, next_c = CoreFunction()(gate_inputs, prev_ce) else: forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis( gate_inputs, 4, axis=1) forget_gate = cf.sigmoid(forget_gate_input) input_gate = cf.sigmoid(input_gate_input) next_c = forget_gate * prev_ce + input_gate * cf.tanh(tanh_input) output_gate = cf.sigmoid(output_gate_input) next_h = output_gate * cf.tanh(next_c) return next_h, next_c
Example #13
Source File: model_py.py From models with MIT License | 5 votes |
def swish(x): return x * F.sigmoid(x)
Example #14
Source File: net.py From chainer with MIT License | 5 votes |
def __call__(self, z): h = F.reshape(F.relu(self.bn0(self.l0(z))), (len(z), self.ch, self.bottom_width, self.bottom_width)) h = F.relu(self.bn1(self.dc1(h))) h = F.relu(self.bn2(self.dc2(h))) h = F.relu(self.bn3(self.dc3(h))) x = F.sigmoid(self.dc4(h)) return x
Example #15
Source File: images.py From models with MIT License | 5 votes |
def logit(self, x): h = self.l1(x) h = F.sigmoid(h) h = self.lout(h) return h
Example #16
Source File: nnpu_risk.py From pywsl with MIT License | 5 votes |
def __init__(self, prior, loss=(lambda x: F.sigmoid(-x)), gamma=1, beta=0, nnPU=True): check.in_range(prior, 0, 1, "prior") self.prior = prior self.gamma = gamma self.beta = beta self.loss_func = loss self.nnPU = nnPU self.positive = 1 self.unlabeled = 0 # self.unlabeled = -1
Example #17
Source File: mesh.py From neural_renderer with MIT License | 5 votes |
def get_batch(self, batch_size): # broadcast for minibatch vertices = cf.broadcast_to(self.vertices, [batch_size] + list(self.vertices.shape)) faces = cf.broadcast_to(self.faces, [batch_size] + list(self.faces.shape)).data textures = cf.sigmoid(cf.broadcast_to(self.textures, [batch_size] + list(self.textures.shape))) return vertices, faces, textures
Example #18
Source File: test_mlp_convolution_2d.py From chainer with MIT License | 5 votes |
def test_init(self): self.assertIs(self.mlp.activation, functions.sigmoid) self.assertEqual(len(self.mlp), 3) for i, conv in enumerate(self.mlp): self.assertIsInstance(conv, links.Convolution2D) if i == 0: self.assertEqual(conv.W.data.shape, (96, 3, 11, 11)) else: self.assertEqual(conv.W.data.shape, (96, 96, 1, 1))
Example #19
Source File: test_mlp_convolution_2d.py From chainer with MIT License | 5 votes |
def setUp(self): self.mlp = links.MLPConvolution2D( 3, (96, 96, 96), 11, activation=functions.sigmoid) self.x = numpy.zeros((10, 3, 20, 20), dtype=numpy.float32)
Example #20
Source File: test_replace_func.py From onnx-chainer with MIT License | 5 votes |
def test_output(self): class Model(chainer.Chain): def __init__(self, value): super().__init__() self.value = value @as_funcnode('NumpyFull') def full(self, xs, value=0): # not support `def full(self, xs_shape, value=0)` # wrapped function node cannot handle shape directly yet. return np.full(xs.array.shape, value, dtype=np.float32) def __call__(self, xs): return F.sigmoid(self.full(xs, value=self.value)) model = Model(value=5) x = input_generator.increasing(2, 3, 4) def numpy_full_converter(params): gb = onnx_helper.GraphBuilder() output = gb.op('Shape', params.input_names) value = onnx.helper.make_tensor( 'value', onnx.TensorProto.FLOAT, [1], [params.func.value]) gb.op_output_named( 'ConstantOfShape', [output], params.output_names, value=value) return gb.nodes() addon_converters = {'NumpyFull': numpy_full_converter} self.expect( model, x, skip_opset_version=[7, 8], external_converters=addon_converters)
Example #21
Source File: test_caffe.py From chainer with MIT License | 5 votes |
def test_Sigmoid(self): class Link(chainer.Chain): def forward(self, x): return F.sigmoid(x) assert_export_import_match(Link(), self.x)
Example #22
Source File: test_reporter.py From chainer with MIT License | 5 votes |
def test_keep_graph(self): x = chainer.Variable(numpy.array([1], numpy.float32)) y = functions.sigmoid(x) reporter = chainer.Reporter() with self._scope(True): reporter.report({'y': y}) assert reporter.observation['y'].creator is not None
Example #23
Source File: test_reporter.py From chainer with MIT License | 5 votes |
def test_keep_graph_default(self): x = chainer.Variable(numpy.array([1], numpy.float32)) y = functions.sigmoid(x) reporter = chainer.Reporter() with self._scope(None): reporter.report({'y': y}) self.assertIsNone(reporter.observation['y'].creator)
Example #24
Source File: net.py From chainer with MIT License | 5 votes |
def forward(self, z): h = F.reshape(F.relu(self.bn0(self.l0(z))), (len(z), self.ch, self.bottom_width, self.bottom_width)) h = F.relu(self.bn1(self.dc1(h))) h = F.relu(self.bn2(self.dc2(h))) h = F.relu(self.bn3(self.dc3(h))) x = F.sigmoid(self.dc4(h)) return x
Example #25
Source File: cbamresnet.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): att1 = F.expand_dims(F.max(x, axis=1), axis=1) att2 = F.expand_dims(F.mean(x, axis=1), axis=1) att = F.concat((att1, att2), axis=1) att = self.conv(att) att = F.broadcast_to(F.sigmoid(att), x.shape) x = x * att return x
Example #26
Source File: modules.py From chainer with MIT License | 5 votes |
def forward(self, x, condition): length = x.shape[2] h = self.conv(x) h = h[:, :, :length] # crop h += condition tanh_z, sig_z = F.split_axis(h, 2, axis=1) z = F.tanh(tanh_z) * F.sigmoid(sig_z) if x.shape[2] == z.shape[2]: residual = self.res(z) + x else: residual = self.res(z) + x[:, :, -1:] # crop skip_conenection = self.skip(z) return residual, skip_conenection
Example #27
Source File: net.py From tensorboardX with MIT License | 5 votes |
def __call__(self, z): h = F.reshape(F.relu(self.bn0(self.l0(z))), (len(z), self.ch, self.bottom_width, self.bottom_width)) h = F.relu(self.bn1(self.dc1(h))) h = F.relu(self.bn2(self.dc2(h))) h = F.relu(self.bn3(self.dc3(h))) x = F.sigmoid(self.dc4(h)) return x
Example #28
Source File: net.py From tensorboardX with MIT License | 5 votes |
def decode(self, z, sigmoid=True): h1 = F.tanh(self.ld1(z)) h2 = self.ld2(h1) if sigmoid: return F.sigmoid(h2) else: return h2
Example #29
Source File: net.py From tensorboardX with MIT License | 5 votes |
def __call__(self, x, sigmoid=True): """AutoEncoder""" return self.decode(self.encode(x)[0], sigmoid)
Example #30
Source File: common.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): w = F.average_pooling_2d(x, ksize=x.shape[2:]) if not self.use_conv: w = F.reshape(w, shape=(w.shape[0], -1)) w = self.conv1(w) if self.use_conv else self.fc1(w) w = self.activ(w) w = self.conv2(w) if self.use_conv else self.fc2(w) w = self.sigmoid(w) if not self.use_conv: w = F.expand_dims(F.expand_dims(w, axis=2), axis=3) x = x * w return x