Python cupy.float32() Examples
The following are 30
code examples of cupy.float32().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cupy
, or try the search function
.
Example #1
Source File: test_fft.py From cupy with MIT License | 6 votes |
def test_rfft(self, xp, dtype): a = testing.shaped_random(self.shape, xp, dtype) if xp is cupy: from cupyx.scipy.fftpack import get_fft_plan shape = (self.n,) if self.n is not None else None plan = get_fft_plan(a, shape=shape, value_type='R2C') assert isinstance(plan, cupy.cuda.cufft.Plan1d) with plan: out = xp.fft.rfft(a, n=self.n, norm=self.norm) else: out = xp.fft.rfft(a, n=self.n, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.complex64) return out
Example #2
Source File: test_cbpdn.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_21(self): N = 16 Nd = 5 K = 2 M = 4 D = cp.random.randn(Nd, Nd, M) s = cp.random.randn(N, N, K) dt = cp.float32 opt = cbpdn.ConvMinL1InL2Ball.Options( {'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) epsilon = 1e0 b = cbpdn.ConvMinL1InL2Ball(D, s, epsilon, opt=opt) b.solve() assert b.X.dtype == dt assert b.Y.dtype == dt assert b.U.dtype == dt
Example #3
Source File: test_cbpdn.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_06(self): N = 16 Nd = 5 K = 2 M = 4 D = cp.random.randn(Nd, Nd, M) s = cp.random.randn(N, N, K) dt = cp.float32 opt = cbpdn.ConvBPDN.Options( {'Verbose': False, 'MaxMainIter': 20, 'BackTrack': {'Enabled': True}, 'DataType': dt}) lmbda = 1e-1 b = cbpdn.ConvBPDN(D, s, lmbda, opt=opt) b.solve() assert b.X.dtype == dt assert b.Xf.dtype == complex_dtype(dt) assert b.Yf.dtype == complex_dtype(dt)
Example #4
Source File: non_maximum_suppression.py From FATE with Apache License 2.0 | 6 votes |
def _call_nms_kernel(bbox, thresh): # PyTorch does not support unsigned long Tensor. # Doesn't matter,since it returns ndarray finally. # So I'll keep it unmodified. n_bbox = bbox.shape[0] threads_per_block = 64 col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32) blocks = (col_blocks, col_blocks, 1) threads = (threads_per_block, 1, 1) mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64) bbox = cp.ascontiguousarray(bbox, dtype=np.float32) kern = _load_kernel('nms_kernel', _nms_gpu_code) kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh), bbox, mask_dev)) mask_host = mask_dev.get() selection, n_selec = _nms_gpu_post( mask_host, n_bbox, threads_per_block, col_blocks) return selection, n_selec
Example #5
Source File: non_maximum_suppression.py From chainer-compiler with MIT License | 6 votes |
def _call_nms_kernel(bbox, thresh): assert False, "Not supported." n_bbox = bbox.shape[0] threads_per_block = 64 col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32) blocks = (col_blocks, col_blocks, 1) threads = (threads_per_block, 1, 1) mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64) bbox = cp.ascontiguousarray(bbox, dtype=np.float32) kern = cp.RawKernel(_nms_gpu_code, 'nms_kernel') kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh), bbox, mask_dev)) mask_host = mask_dev.get() selection, n_selec = _nms_gpu_post( mask_host, n_bbox, threads_per_block, col_blocks) return selection, n_selec
Example #6
Source File: utils.py From EEND with MIT License | 6 votes |
def use_single_gpu(): """ Use single GPU device. If CUDA_VISIBLE_DEVICES is set, select a device from the variable. Otherwise, get a free GPU device and use it. Returns: assigned GPU id. """ cvd = os.environ.get('CUDA_VISIBLE_DEVICES') if cvd is None: # no GPUs are researved cvd = get_free_gpus()[0] elif ',' in cvd: # multiple GPUs are researved cvd = int(cvd.split(',')[0]) else: # single GPU is reserved cvd = int(cvd) # Use the GPU immediately chainer.cuda.get_device_from_id(cvd).use() cupy.empty((1,), dtype=cupy.float32) return cvd
Example #7
Source File: test_cbpdn.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_30(self): N = 16 Nd = 5 M = 4 D = cp.random.randn(Nd, Nd, M) s = cp.random.randn(N, N) w = cp.ones(s.shape) dt = cp.float32 opt = cbpdn.ConvBPDN.Options( {'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) lmbda = 1e-1 b = cbpdn.AddMaskSim(cbpdn.ConvBPDN, D, s, w, lmbda, opt=opt) b.solve() assert b.cbpdn.X.dtype == dt assert b.cbpdn.Y.dtype == dt assert b.cbpdn.U.dtype == dt
Example #8
Source File: test_raw.py From cupy with MIT License | 6 votes |
def test_template_specialization(self): if self.backend == 'nvcc': self.skipTest('nvcc does not support template specialization') # compile code name_expressions = ['my_sqrt<int>', 'my_sqrt<float>', 'my_sqrt<complex<double>>', 'my_func'] mod = cupy.RawModule(code=test_cxx_template, options=('--std=c++11',), name_expressions=name_expressions) dtypes = (cupy.int32, cupy.float32, cupy.complex128, cupy.float64) for ker_T, dtype in zip(name_expressions, dtypes): # get specialized kernels ker = mod.get_function(ker_T) # prepare inputs & expected outputs in_arr = cupy.testing.shaped_random((10,), dtype=dtype) out_arr = in_arr**2 # run ker((1,), (10,), (in_arr, 10)) # check results assert cupy.allclose(in_arr, out_arr)
Example #9
Source File: test_cbpdn.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_19(self): N = 16 Nd = 5 K = 2 M = 4 D = cp.random.randn(Nd, Nd, M) s = cp.random.randn(N, N, K) dt = cp.float32 opt = cbpdn.ConvBPDNGradReg.Options( {'Verbose': False, 'LinSolveCheck': True, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) lmbda = 1e-1 mu = 1e-2 b = cbpdn.ConvBPDNGradReg(D, s, lmbda, mu, opt=opt) b.solve() assert b.X.dtype == dt assert b.Y.dtype == dt assert b.U.dtype == dt
Example #10
Source File: test_cbpdn.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_17(self): N = 16 Nd = 5 K = 2 M = 4 D = cp.random.randn(Nd, Nd, M) s = cp.random.randn(N, N, K) dt = cp.float32 opt = cbpdn.ConvElasticNet.Options( {'Verbose': False, 'LinSolveCheck': True, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) lmbda = 1e-1 mu = 1e-2 b = cbpdn.ConvElasticNet(D, s, lmbda, mu, opt=opt) b.solve() assert b.X.dtype == dt assert b.Y.dtype == dt assert b.U.dtype == dt
Example #11
Source File: test_raw.py From cupy with MIT License | 6 votes |
def test_context_switch_RawModule4(self): # run test_load_cubin() on another device # generate cubin in the temp dir and load it on device 0 device0 = cupy.cuda.Device(0) device1 = cupy.cuda.Device(1) if device0.compute_capability != device1.compute_capability: raise pytest.skip() with device0: file_path = self._generate_file('cubin') mod = cupy.RawModule(path=file_path, backend=self.backend) ker = mod.get_function('test_div') # in this test, reloading happens at kernel launch with device1: x1, x2, y = self._helper(ker, cupy.float32) assert cupy.allclose(y, x1 / (x2 + 1.0))
Example #12
Source File: test_cbpdn.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_06(self): N = 16 Nd = 5 K = 2 M = 4 D = cp.random.randn(Nd, Nd, M) s = cp.random.randn(N, N, K) dt = cp.float32 opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) lmbda = 1e-1 b = cbpdn.ConvBPDN(D, s, lmbda, opt=opt) b.solve() assert b.X.dtype == dt assert b.Y.dtype == dt assert b.U.dtype == dt
Example #13
Source File: test_fft.py From cupy with MIT License | 6 votes |
def test_irfft(self, xp, dtype): a = testing.shaped_random(self.shape, xp, dtype) if xp is cupy: from cupyx.scipy.fftpack import get_fft_plan shape = (self.n,) if self.n is not None else None plan = get_fft_plan(a, shape=shape, value_type='C2R') assert isinstance(plan, cupy.cuda.cufft.Plan1d) with plan: out = xp.fft.irfft(a, n=self.n, norm=self.norm) else: out = xp.fft.irfft(a, n=self.n, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.float32) return out
Example #14
Source File: test_fft.py From cupy with MIT License | 6 votes |
def test_irfft2(self, xp, dtype, order, enable_nd): assert config.enable_nd_planning == enable_nd if (10020 >= cupy.cuda.runtime.runtimeGetVersion() >= 10010 and int(cupy.cuda.device.get_compute_capability()) < 70 and _size_last_transform_axis( self.shape, self.s, self.axes) == 2): raise unittest.SkipTest('work-around for cuFFT issue') a = testing.shaped_random(self.shape, xp, dtype) if order == 'F': a = xp.asfortranarray(a) out = xp.fft.irfft2(a, s=self.s, axes=self.axes, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.float32) return out
Example #15
Source File: test_fft.py From cupy with MIT License | 6 votes |
def test_irfftn(self, xp, dtype, order, enable_nd): assert config.enable_nd_planning == enable_nd if (10020 >= cupy.cuda.runtime.runtimeGetVersion() >= 10010 and int(cupy.cuda.device.get_compute_capability()) < 70 and _size_last_transform_axis( self.shape, self.s, self.axes) == 2): raise unittest.SkipTest('work-around for cuFFT issue') a = testing.shaped_random(self.shape, xp, dtype) if order == 'F': a = xp.asfortranarray(a) out = xp.fft.irfftn(a, s=self.s, axes=self.axes, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.float32) return out # Only those tests in which a legit plan can be obtained are kept
Example #16
Source File: test_fft.py From cupy with MIT License | 6 votes |
def test_irfftn(self, xp, dtype, enable_nd): assert config.enable_nd_planning == enable_nd a = testing.shaped_random(self.shape, xp, dtype) if xp is cupy: from cupyx.scipy.fftpack import get_fft_plan plan = get_fft_plan(a, self.s, self.axes, value_type='C2R') with plan: out = xp.fft.irfftn( a, s=self.s, axes=self.axes, norm=self.norm) else: out = xp.fft.irfftn(a, s=self.s, axes=self.axes, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.float32) return out # TODO(leofang): write test_rfftn_error_on_wrong_plan()?
Example #17
Source File: non_maximum_suppression.py From chainercv with MIT License | 6 votes |
def _call_nms_kernel(bbox, thresh): n_bbox = bbox.shape[0] threads_per_block = 64 col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32) blocks = (col_blocks, col_blocks, 1) threads = (threads_per_block, 1, 1) mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64) bbox = cp.ascontiguousarray(bbox, dtype=np.float32) kern = cp.RawKernel(_nms_gpu_code, 'nms_kernel') kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh), bbox, mask_dev)) mask_host = mask_dev.get() selection, n_selec = _nms_gpu_post( mask_host, n_bbox, threads_per_block, col_blocks) return selection, n_selec
Example #18
Source File: test_npz.py From cupy with MIT License | 6 votes |
def test_load_pickle(self): a = testing.shaped_arange((2, 3, 4), dtype=cupy.float32) sio = io.BytesIO() a.dump(sio) s = sio.getvalue() sio.close() sio = io.BytesIO(s) b = cupy.load(sio, allow_pickle=True) testing.assert_array_equal(a, b) sio.close() sio = io.BytesIO(s) with self.assertRaises(ValueError): cupy.load(sio, allow_pickle=False) sio.close()
Example #19
Source File: test_userkernel.py From cupy with MIT License | 6 votes |
def test_manual_indexing(self, n=100): in1 = cupy.random.uniform(-1, 1, n).astype(cupy.float32) in2 = cupy.random.uniform(-1, 1, n).astype(cupy.float32) uesr_kernel_1 = cupy.ElementwiseKernel( 'T x, T y', 'T z', ''' z = x + y; ''', 'uesr_kernel_1') out1 = uesr_kernel_1(in1, in2) uesr_kernel_2 = cupy.ElementwiseKernel( 'raw T x, raw T y', 'raw T z', ''' z[i] = x[i] + y[i]; ''', 'uesr_kernel_2') out2 = uesr_kernel_2(in1, in2, size=n) testing.assert_array_equal(out1, out2)
Example #20
Source File: test_cbpdn.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_15(self): N = 16 Nd = 5 K = 2 M = 4 D = cp.random.randn(Nd, Nd, M) s = cp.random.randn(N, N, K) dt = cp.float32 opt = cbpdn.ConvBPDNJoint.Options( {'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) lmbda = 1e-1 mu = 1e-2 b = cbpdn.ConvBPDNJoint(D, s, lmbda, mu, opt=opt) b.solve() assert b.X.dtype == dt assert b.Y.dtype == dt assert b.U.dtype == dt
Example #21
Source File: einsum.py From cupy with MIT License | 5 votes |
def _use_cutensor(dtype0, sub0, dtype1, sub1, batch_dims, contract_dims): if not cupy.cuda.cutensor_enabled: return False if dtype0 != dtype1: return False if dtype0 not in (cupy.float32, cupy.float64, cupy.complex64, cupy.complex128): return False if (len(contract_dims) >= 1 and (sub0[-1] in batch_dims or sub1[-1] in batch_dims)): return False return True
Example #22
Source File: test_rpca.py From sporco with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_04(self): N = 8 D = cp.random.randn(N, N) dt = cp.float32 opt = rpca.RobustPCA.Options({'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) b = rpca.RobustPCA(D, opt=opt) b.solve() assert b.X.dtype == dt assert b.Y.dtype == dt assert b.U.dtype == dt
Example #23
Source File: test_fft.py From cupy with MIT License | 5 votes |
def test_ihfft(self, xp, dtype): a = testing.shaped_random(self.shape, xp, dtype) out = xp.fft.ihfft(a, n=self.n, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.complex64) return out
Example #24
Source File: test_fft.py From cupy with MIT License | 5 votes |
def test_hfft(self, xp, dtype): a = testing.shaped_random(self.shape, xp, dtype) out = xp.fft.hfft(a, n=self.n, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.float32) return out
Example #25
Source File: pure_nccl_communicator.py From pytorch-sso with MIT License | 5 votes |
def _get_max_kernel(): return chainer.cuda.cupy.ReductionKernel( 'float32 x', 'float32 y', 'fabsf(x)', 'fmaxf(a, b)', 'y = a', '0', 'my_max')
Example #26
Source File: test_tvl1.py From sporco with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_06(self): lmbda = 3 dt = cp.float32 opt = tvl1.TVL1Deconv.Options( {'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) b = tvl1.TVL1Deconv(cp.ones((1, )), self.D, lmbda, opt=opt) b.solve() assert b.X.dtype == dt assert b.Y.dtype == dt assert b.U.dtype == dt
Example #27
Source File: test_tvl1.py From sporco with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_04(self): lmbda = 3 dt = cp.float32 opt = tvl1.TVL1Denoise.Options( {'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True}, 'DataType': dt}) b = tvl1.TVL1Denoise(self.D, lmbda, opt=opt) b.solve() assert b.X.dtype == dt assert b.Y.dtype == dt assert b.U.dtype == dt
Example #28
Source File: test_fft.py From cupy with MIT License | 5 votes |
def test_rfft2(self, xp, dtype, order, enable_nd): assert config.enable_nd_planning == enable_nd a = testing.shaped_random(self.shape, xp, dtype) if order == 'F': a = xp.asfortranarray(a) out = xp.fft.rfft2(a, s=self.s, axes=self.axes, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.complex64) return out
Example #29
Source File: test_fft.py From cupy with MIT License | 5 votes |
def test_rfftn(self, xp, dtype, enable_nd): assert config.enable_nd_planning == enable_nd a = testing.shaped_random(self.shape, xp, dtype) if xp is cupy: from cupyx.scipy.fftpack import get_fft_plan plan = get_fft_plan(a, self.s, self.axes, value_type='R2C') with plan: out = xp.fft.rfftn(a, s=self.s, axes=self.axes, norm=self.norm) else: out = xp.fft.rfftn(a, s=self.s, axes=self.axes, norm=self.norm) if xp is np and dtype in [np.float16, np.float32, np.complex64]: out = out.astype(np.complex64) return out
Example #30
Source File: pure_nccl_communicator.py From pytorch-sso with MIT License | 5 votes |
def _get_nccl_dtype(dtype): if dtype == np.float16: return nccl.NCCL_FLOAT16 elif dtype == np.float32: return nccl.NCCL_FLOAT32 elif dtype == np.float64: return nccl.NCCL_FLOAT64 else: raise ValueError( 'dtype must be numpy.float16, numpy.float32 or numpy.float64,' 'not {}'.format(dtype))