Python _thread.RLock() Examples
The following are 17
code examples of _thread.RLock().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
_thread
, or try the search function
.
Example #1
Source File: threading.py From jawfish with MIT License | 6 votes |
def __init__(self, lock=None): if lock is None: lock = RLock() self._lock = lock # Export the lock's acquire() and release() methods self.acquire = lock.acquire self.release = lock.release # If the lock defines _release_save() and/or _acquire_restore(), # these override the default implementations (which just call # release() and acquire() on the lock). Ditto for _is_owned(). try: self._release_save = lock._release_save except AttributeError: pass try: self._acquire_restore = lock._acquire_restore except AttributeError: pass try: self._is_owned = lock._is_owned except AttributeError: pass self._waiters = []
Example #2
Source File: threading.py From Fluid-Designer with GNU General Public License v3.0 | 6 votes |
def __init__(self, lock=None): if lock is None: lock = RLock() self._lock = lock # Export the lock's acquire() and release() methods self.acquire = lock.acquire self.release = lock.release # If the lock defines _release_save() and/or _acquire_restore(), # these override the default implementations (which just call # release() and acquire() on the lock). Ditto for _is_owned(). try: self._release_save = lock._release_save except AttributeError: pass try: self._acquire_restore = lock._acquire_restore except AttributeError: pass try: self._is_owned = lock._is_owned except AttributeError: pass self._waiters = _deque()
Example #3
Source File: threading.py From Project-New-Reign---Nemesis-Main with GNU General Public License v3.0 | 6 votes |
def __init__(self, lock=None): if lock is None: lock = RLock() self._lock = lock # Export the lock's acquire() and release() methods self.acquire = lock.acquire self.release = lock.release # If the lock defines _release_save() and/or _acquire_restore(), # these override the default implementations (which just call # release() and acquire() on the lock). Ditto for _is_owned(). try: self._release_save = lock._release_save except AttributeError: pass try: self._acquire_restore = lock._acquire_restore except AttributeError: pass try: self._is_owned = lock._is_owned except AttributeError: pass self._waiters = _deque()
Example #4
Source File: threading.py From Imogen with MIT License | 6 votes |
def __init__(self, lock=None): if lock is None: lock = RLock() self._lock = lock # Export the lock's acquire() and release() methods self.acquire = lock.acquire self.release = lock.release # If the lock defines _release_save() and/or _acquire_restore(), # these override the default implementations (which just call # release() and acquire() on the lock). Ditto for _is_owned(). try: self._release_save = lock._release_save except AttributeError: pass try: self._acquire_restore = lock._acquire_restore except AttributeError: pass try: self._is_owned = lock._is_owned except AttributeError: pass self._waiters = _deque()
Example #5
Source File: threading.py From ironpython3 with Apache License 2.0 | 6 votes |
def __init__(self, lock=None): if lock is None: lock = RLock() self._lock = lock # Export the lock's acquire() and release() methods self.acquire = lock.acquire self.release = lock.release # If the lock defines _release_save() and/or _acquire_restore(), # these override the default implementations (which just call # release() and acquire() on the lock). Ditto for _is_owned(). try: self._release_save = lock._release_save except AttributeError: pass try: self._acquire_restore = lock._acquire_restore except AttributeError: pass try: self._is_owned = lock._is_owned except AttributeError: pass self._waiters = _deque()
Example #6
Source File: threading.py From jawfish with MIT License | 5 votes |
def RLock(*args, **kwargs): """Factory function that returns a new reentrant lock. A reentrant lock must be released by the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread must release it once for each time it has acquired it. """ if _CRLock is None: return _PyRLock(*args, **kwargs) return _CRLock(*args, **kwargs)
Example #7
Source File: threading.py From Fluid-Designer with GNU General Public License v3.0 | 5 votes |
def RLock(*args, **kwargs): """Factory function that returns a new reentrant lock. A reentrant lock must be released by the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread must release it once for each time it has acquired it. """ if _CRLock is None: return _PyRLock(*args, **kwargs) return _CRLock(*args, **kwargs)
Example #8
Source File: threading.py From Imogen with MIT License | 5 votes |
def RLock(*args, **kwargs): """Factory function that returns a new reentrant lock. A reentrant lock must be released by the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread must release it once for each time it has acquired it. """ if _CRLock is None: return _PyRLock(*args, **kwargs) return _CRLock(*args, **kwargs)
Example #9
Source File: threading.py From Project-New-Reign---Nemesis-Main with GNU General Public License v3.0 | 5 votes |
def RLock(*args, **kwargs): """Factory function that returns a new reentrant lock. A reentrant lock must be released by the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread must release it once for each time it has acquired it. """ if _CRLock is None: return _PyRLock(*args, **kwargs) return _CRLock(*args, **kwargs)
Example #10
Source File: threading.py From ironpython3 with Apache License 2.0 | 5 votes |
def RLock(*args, **kwargs): """Factory function that returns a new reentrant lock. A reentrant lock must be released by the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread must release it once for each time it has acquired it. """ if _CRLock is None: return _PyRLock(*args, **kwargs) return _CRLock(*args, **kwargs)
Example #11
Source File: compat.py From PyPCAPKit with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, func): self.func = func self.attrname = None self.__doc__ = func.__doc__ self.lock = RLock()
Example #12
Source File: threading.py From Project-New-Reign---Nemesis-Main with GNU General Public License v3.0 | 4 votes |
def wait(self, timeout=None): """Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this method is called, a RuntimeError is raised. This method releases the underlying lock, and then blocks until it is awakened by a notify() or notify_all() call for the same condition variable in another thread, or until the optional timeout occurs. Once awakened or timed out, it re-acquires the lock and returns. When the timeout argument is present and not None, it should be a floating point number specifying a timeout for the operation in seconds (or fractions thereof). When the underlying lock is an RLock, it is not released using its release() method, since this may not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another internal interface is then used to restore the recursion level when the lock is reacquired. """ if not self._is_owned(): raise RuntimeError("cannot wait on un-acquired lock") waiter = _allocate_lock() waiter.acquire() self._waiters.append(waiter) saved_state = self._release_save() gotit = False try: # restore state no matter what (e.g., KeyboardInterrupt) if timeout is None: waiter.acquire() gotit = True else: if timeout > 0: gotit = waiter.acquire(True, timeout) else: gotit = waiter.acquire(False) return gotit finally: self._acquire_restore(saved_state) if not gotit: try: self._waiters.remove(waiter) except ValueError: pass
Example #13
Source File: command.py From shakedown with Apache License 2.0 | 4 votes |
def connection_cache(func: callable): """Connection cache for SSH sessions. This is to prevent opening a new, expensive connection on every command run.""" cache = dict() lock = RLock() @wraps(func) def func_wrapper(host: str, username: str, *args, **kwargs): key = "{h}-{u}".format(h=host, u=username) if key in cache: # connection exists, check if it is still valid before # returning it. conn = cache[key] if conn and conn.is_active() and conn.is_authenticated(): return conn else: # try to close a bad connection and remove it from # the cache. if conn: try_close(conn) del cache[key] # key is not in the cache, so try to recreate it # it may have been removed just above. if key not in cache: conn = func(host, username, *args, **kwargs) if conn is not None: cache[key] = conn return conn # not sure how to reach this point, but just in case. return None def get_cache() -> dict: return cache def purge(key: str=None): with lock: if key is None: conns = [(k, v) for k, v in cache.items()] elif key in cache: conns = ((key, cache[key]), ) else: conns = list() for k, v in conns: try_close(v) del cache[k] func_wrapper.get_cache = get_cache func_wrapper.purge = purge return func_wrapper
Example #14
Source File: threading.py From ironpython3 with Apache License 2.0 | 4 votes |
def wait(self, timeout=None): """Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this method is called, a RuntimeError is raised. This method releases the underlying lock, and then blocks until it is awakened by a notify() or notify_all() call for the same condition variable in another thread, or until the optional timeout occurs. Once awakened or timed out, it re-acquires the lock and returns. When the timeout argument is present and not None, it should be a floating point number specifying a timeout for the operation in seconds (or fractions thereof). When the underlying lock is an RLock, it is not released using its release() method, since this may not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another internal interface is then used to restore the recursion level when the lock is reacquired. """ if not self._is_owned(): raise RuntimeError("cannot wait on un-acquired lock") waiter = _allocate_lock() waiter.acquire() self._waiters.append(waiter) saved_state = self._release_save() gotit = False try: # restore state no matter what (e.g., KeyboardInterrupt) if timeout is None: waiter.acquire() gotit = True else: if timeout > 0: gotit = waiter.acquire(True, timeout) else: gotit = waiter.acquire(False) return gotit finally: self._acquire_restore(saved_state) if not gotit: try: self._waiters.remove(waiter) except ValueError: pass
Example #15
Source File: threading.py From Imogen with MIT License | 4 votes |
def wait(self, timeout=None): """Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this method is called, a RuntimeError is raised. This method releases the underlying lock, and then blocks until it is awakened by a notify() or notify_all() call for the same condition variable in another thread, or until the optional timeout occurs. Once awakened or timed out, it re-acquires the lock and returns. When the timeout argument is present and not None, it should be a floating point number specifying a timeout for the operation in seconds (or fractions thereof). When the underlying lock is an RLock, it is not released using its release() method, since this may not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another internal interface is then used to restore the recursion level when the lock is reacquired. """ if not self._is_owned(): raise RuntimeError("cannot wait on un-acquired lock") waiter = _allocate_lock() waiter.acquire() self._waiters.append(waiter) saved_state = self._release_save() gotit = False try: # restore state no matter what (e.g., KeyboardInterrupt) if timeout is None: waiter.acquire() gotit = True else: if timeout > 0: gotit = waiter.acquire(True, timeout) else: gotit = waiter.acquire(False) return gotit finally: self._acquire_restore(saved_state) if not gotit: try: self._waiters.remove(waiter) except ValueError: pass
Example #16
Source File: threading.py From Fluid-Designer with GNU General Public License v3.0 | 4 votes |
def wait(self, timeout=None): """Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this method is called, a RuntimeError is raised. This method releases the underlying lock, and then blocks until it is awakened by a notify() or notify_all() call for the same condition variable in another thread, or until the optional timeout occurs. Once awakened or timed out, it re-acquires the lock and returns. When the timeout argument is present and not None, it should be a floating point number specifying a timeout for the operation in seconds (or fractions thereof). When the underlying lock is an RLock, it is not released using its release() method, since this may not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another internal interface is then used to restore the recursion level when the lock is reacquired. """ if not self._is_owned(): raise RuntimeError("cannot wait on un-acquired lock") waiter = _allocate_lock() waiter.acquire() self._waiters.append(waiter) saved_state = self._release_save() gotit = False try: # restore state no matter what (e.g., KeyboardInterrupt) if timeout is None: waiter.acquire() gotit = True else: if timeout > 0: gotit = waiter.acquire(True, timeout) else: gotit = waiter.acquire(False) return gotit finally: self._acquire_restore(saved_state) if not gotit: try: self._waiters.remove(waiter) except ValueError: pass
Example #17
Source File: threading.py From jawfish with MIT License | 4 votes |
def wait(self, timeout=None): """Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this method is called, a RuntimeError is raised. This method releases the underlying lock, and then blocks until it is awakened by a notify() or notify_all() call for the same condition variable in another thread, or until the optional timeout occurs. Once awakened or timed out, it re-acquires the lock and returns. When the timeout argument is present and not None, it should be a floating point number specifying a timeout for the operation in seconds (or fractions thereof). When the underlying lock is an RLock, it is not released using its release() method, since this may not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another internal interface is then used to restore the recursion level when the lock is reacquired. """ if not self._is_owned(): raise RuntimeError("cannot wait on un-acquired lock") waiter = _allocate_lock() waiter.acquire() self._waiters.append(waiter) saved_state = self._release_save() try: # restore state no matter what (e.g., KeyboardInterrupt) if timeout is None: waiter.acquire() gotit = True else: if timeout > 0: gotit = waiter.acquire(True, timeout) else: gotit = waiter.acquire(False) if not gotit: try: self._waiters.remove(waiter) except ValueError: pass return gotit finally: self._acquire_restore(saved_state)