Python skimage.io.imsave() Examples
The following are 30
code examples of skimage.io.imsave().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
skimage.io
, or try the search function
.
Example #1
Source File: utils.py From gym-miniworld with Apache License 2.0 | 6 votes |
def save_img(file_name, img): from skimage import io if isinstance(img, Variable): img = img.data.cpu().numpy() if len(img.shape) == 4: img = img.squeeze(0) # scipy expects shape (W, H, 3) if img.shape[0] == 3: img = img.transpose(2, 1, 0) img = img.clip(0, 255) img = img.astype(np.uint8) io.imsave(file_name, img)
Example #2
Source File: rotate_images.py From AI_in_Medicine_Clinical_Imaging_Classification with MIT License | 6 votes |
def rotate_images(file_path, degrees_of_rotation, lst_imgs): ''' Rotates image based on a specified amount of degrees INPUT file_path: file path to the folder containing images. degrees_of_rotation: Integer, specifying degrees to rotate the image. Set number from 1 to 360. lst_imgs: list of image strings. OUTPUT Images rotated by the degrees of rotation specififed. ''' for l in lst_imgs: img = io.imread(file_path + str(l) + '.jpeg') img = rotate(img, degrees_of_rotation) io.imsave(file_path + str(l) + '_' + str(degrees_of_rotation) + '.jpeg', img)
Example #3
Source File: colorize.py From faceai with MIT License | 6 votes |
def colorize(): path = './img/colorize/colorize2.png' # cv2.imwrite('./img/colorize3.png', cv2.imread(path, 0)) x, y, image_shape = get_train_data(path) model = build_model() model.load_weights('./data/simple_colorize.h5') output = model.predict(x) output *= 128 tmp = np.zeros((200, 200, 3)) tmp[:, :, 0] = x[0][:, :, 0] tmp[:, :, 1:] = output[0] colorizePath = path.replace(".png", "-res.png") imsave(colorizePath, lab2rgb(tmp)) cv2.imshow("I", cv2.imread(path)) cv2.imshow("II", cv2.imread(colorizePath)) cv2.waitKey(0) cv2.destroyAllWindows() # imsave("test_image_gray.png", rgb2gray(lab2rgb(tmp)))
Example #4
Source File: helpFunctions.py From TCDTIMITprocessing with GNU General Public License v3.0 | 6 votes |
def convertToGrayScale (rootDir, dirNames): nbConverted = 0 for root, dirs, files in os.walk(rootDir): files.sort(key=tryint) for file in files: parentDir = os.path.basename(root) fname = os.path.splitext(file)[0] # no path, no extension. only filename if parentDir in dirNames: # convert all images in here to grayscale, store to dirName_gray newDirPath = ''.join([os.path.dirname(root), os.sep, parentDir + "_gray"]) newFilePath = ''.join([newDirPath, os.sep, fname + "_gray.jpg"]) if not os.path.exists(newDirPath): os.makedirs(newDirPath) if not os.path.exists(newFilePath): # read in grayscale, write to new path # with OpenCV: weird results (gray image larger than color ?!?) # img = cv2.imread(root+os.sep+file, 0) # cv2.imwrite(newFilePath, img) img_gray = rgb2gray(io.imread(root + os.sep + file)) io.imsave(newFilePath, img_gray) # don't write to disk if already exists nbConverted += 1 # print(nbConverted, " files have been converted to Grayscale") return 0
Example #5
Source File: generator.py From ad-versarial with MIT License | 6 votes |
def generate_copy(images, boxes, out): global num_adfree if num_adfree < MAX_NUM_ADFREE: num_adfree += len(images) else: logger.info("Created enough ADFREE") return if boxes: logger.error("%s has boxes that should be replaced ... skipped", out) return logger.info("Copying %s", out) tmp_out = '{}-copy'.format(out) annotation_path = os.path.join(ANNOTATION_PATH, tmp_out + '.txt') image_path = os.path.join(IMAGES_PATH, tmp_out + '.png') with open(annotation_path, 'w+') as f: f.write('') try: io.imsave(image_path, images[0]) logger.info("Saved %s", tmp_out) except ValueError: logger.error("Failed to save %s", image_path)
Example #6
Source File: rotate_images.py From eyenet with MIT License | 6 votes |
def rotate_images(file_path, degrees_of_rotation, lst_imgs): ''' Rotates image based on a specified amount of degrees INPUT file_path: file path to the folder containing images. degrees_of_rotation: Integer, specifying degrees to rotate the image. Set number from 1 to 360. lst_imgs: list of image strings. OUTPUT Images rotated by the degrees of rotation specififed. ''' for l in lst_imgs: img = io.imread(file_path + str(l) + '.jpeg') img = rotate(img, degrees_of_rotation) io.imsave(file_path + str(l) + '_' + str(degrees_of_rotation) + '.jpeg', img)
Example #7
Source File: bm_comp_perform.py From BIRL with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _prepare_images(path_out, im_size=IMAGE_SIZE): """ generate and prepare synth. images for registration :param str path_out: path to the folder :param tuple(int,int) im_size: desired image size :return tuple(str,str): paths to target and source image """ image = resize(data.astronaut(), output_shape=im_size, mode='constant') img_target = random_noise(image, var=IMAGE_NOISE) path_img_target = os.path.join(path_out, NAME_IMAGE_TARGET) io.imsave(path_img_target, img_target) # warp synthetic image tform = AffineTransform(scale=(0.9, 0.9), rotation=0.2, translation=(200, -50)) img_source = warp(image, tform.inverse, output_shape=im_size) img_source = random_noise(img_source, var=IMAGE_NOISE) path_img_source = os.path.join(path_out, NAME_IMAGE_SOURCE) io.imsave(path_img_source, img_source) return path_img_target, path_img_source
Example #8
Source File: model.py From pytorch-UNet with MIT License | 6 votes |
def predict_dataset(self, dataset, export_path): """ Predicts the images in the given dataset and saves it to disk. Args: dataset: the dataset of images to be exported, instance of unet.dataset.Image2D export_path: path to folder where results to be saved """ self.net.train(False) chk_mkdir(export_path) for batch_idx, (X_batch, *rest) in enumerate(DataLoader(dataset, batch_size=1)): if isinstance(rest[0][0], str): image_filename = rest[0][0] else: image_filename = '%s.png' % str(batch_idx + 1).zfill(3) X_batch = Variable(X_batch.to(device=self.device)) y_out = self.net(X_batch).cpu().data.numpy() io.imsave(os.path.join(export_path, image_filename), y_out[0, 1, :, :])
Example #9
Source File: data.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2): for i,item in enumerate(npyfile): img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0] io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)
Example #10
Source File: data_io.py From pyImSegm with BSD 3-Clause "New" or "Revised" License | 5 votes |
def convert_img_2_nifti_gray(path_img, path_out): """ converting standard image to Nifti format :param str path_img: path to input image :param str path_out: path to output directory :return str: path to output image >>> np.random.seed(0) >>> img = np.random.random((150, 125)) >>> p_in = './temp_sample-image.png' >>> io.imsave(p_in, img) >>> p_out = convert_img_2_nifti_gray(p_in, '.') >>> p_out 'temp_sample-image.nii' >>> os.remove(p_out) >>> os.remove(p_in) """ assert os.path.exists(path_img), 'missing input: %s' % path_img assert os.path.exists(path_out), 'missing output: %s' % path_out name_img_out = os.path.splitext(os.path.basename(path_img))[0] + '.nii' path_img_out = os.path.join(os.path.dirname(path_out), name_img_out) logging.debug('Convert image to Nifti format "%s" -> "%s"', path_img, path_img_out) img = io_imread(path_img) img = color.rgb2gray(img) img = np.swapaxes(img, 1, 0) nim = nibabel.Nifti1Pair(img, np.eye(4)) nibabel.save(nim, path_img_out) # for k in nim.header.keys(): # print('{:20s}: \t{}'.format(k, nim.header[k])) return path_img_out
Example #11
Source File: data.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2): for i,item in enumerate(npyfile): img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0] io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)
Example #12
Source File: data_io.py From pyImSegm with BSD 3-Clause "New" or "Revised" License | 5 votes |
def io_imsave(path_img, img): """ just a wrapper to suppers debug messages from the PIL function :param str path_img: :param ndarray img: image """ io.imsave(path_img, img)
Example #13
Source File: data.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2): for i,item in enumerate(npyfile): img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0] io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)
Example #14
Source File: demo_retinanet.py From Grad-CAM.pytorch with Apache License 2.0 | 5 votes |
def save_image(image_dicts, input_image_name, layer_name, network='retinanet', output_dir='./results'): prefix = os.path.splitext(input_image_name)[0] for key, image in image_dicts.items(): if key == 'predict_box': io.imsave(os.path.join(output_dir, '{}-{}-{}.jpg'.format(prefix, network, key)), image) else: io.imsave(os.path.join(output_dir, '{}-{}-{}-{}.jpg'.format(prefix, network, layer_name, key)), image)
Example #15
Source File: data.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2): for i,item in enumerate(npyfile): img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0] io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)
Example #16
Source File: data.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2): for i,item in enumerate(npyfile): img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0] io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)
Example #17
Source File: data.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2): for i,item in enumerate(npyfile): img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0] io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)
Example #18
Source File: brain_pipeline.py From brain_segmentation with MIT License | 5 votes |
def save_labels(fns): ''' INPUT list 'fns': filepaths to all labels ''' progress.currval = 0 for label_idx in progress(xrange(len(labels))): slices = io.imread(labels[label_idx], plugin = 'simpleitk') for slice_idx in xrange(len(slices)): io.imsave('Labels/{}_{}L.png'.format(label_idx, slice_idx), slices[slice_idx])
Example #19
Source File: demo.py From Grad-CAM.pytorch with Apache License 2.0 | 5 votes |
def save_image(image_dicts, input_image_name, network='frcnn', output_dir='./results'): prefix = os.path.splitext(input_image_name)[0] for key, image in image_dicts.items(): io.imsave(os.path.join(output_dir, '{}-{}-{}.jpg'.format(prefix, network, key)), image)
Example #20
Source File: main.py From Grad-CAM.pytorch with Apache License 2.0 | 5 votes |
def save_image(image_dicts, input_image_name, network, output_dir): prefix = os.path.splitext(input_image_name)[0] for key, image in image_dicts.items(): io.imsave(os.path.join(output_dir, '{}-{}-{}.jpg'.format(prefix, network, key)), image)
Example #21
Source File: get_mean_image.py From taskonomy with MIT License | 5 votes |
def save_data(statistic, cfg, args): # Save the statistic data print("Computing statistic") start = time.time() statistic_image = np.squeeze(statistic.get()).astype( get_dtype(get_bit_depth(cfg))) # print(statistic_image) print("dtype: {}".format(statistic_image.dtype)) print("shape: {}".format(statistic_image.shape)) print("min/max: {}/{}".format(statistic_image.min(), statistic_image.max())) print("Computed statistic ({:.2f} secs)".format(time.time() - start)) print("Writing pkl") with open(os.path.join(cfg['log_dir'], "{}_label.pkl").format(args.stat_type), 'wb') as f: pkl.dump(statistic_image, f) print("Writing png to {}".format( os.path.join(cfg['log_dir'], "{}_label.png").format(args.stat_type))) if len(statistic_image.shape) == 0: statistic_image = statistic_image[np.newaxis, np.newaxis] saved_val = np.squeeze(statistic.saved_val)[np.newaxis, np.newaxis] elif len(statistic_image.shape) == 1: print(statistic_image.shape) statistic_image = statistic_image[:, np.newaxis] try: saved_val = np.squeeze(statistic.saved_val)[:, np.newaxis] except: # it's an index for a 1-hot encoding saved_val = np.zeros_like(statistic_image) saved_val[int(statistic.saved_val)] = 1. else: saved_val = np.squeeze(statistic.saved_val) if len(statistic_image.shape) == 2 or statistic_image.shape[-1] in [1,3,4]: io.imsave( os.path.join(cfg['log_dir'], "{}_label.png").format(args.stat_type), statistic_image ) try: io.imsave( os.path.join(cfg['log_dir'], "single_label.png"), saved_val.astype( get_dtype(get_bit_depth(cfg))) ) except: tb.print_exc() print("Done :)")
Example #22
Source File: RAG_threshold.py From Pic-Numero with MIT License | 5 votes |
def block_process(img): func = lambda block: io.imsave("Block/{}.png".format(Helper.generate_random_id()), block)#Display.save_image("Block/{}.png".format(Helper.generate_random_id()), block) Helper.block_proc(img, (50,1900), func)
Example #23
Source File: RAG_threshold.py From Pic-Numero with MIT License | 5 votes |
def extract_roi(img, labels_to_keep=[1,2]): label_img = segmentation.slic(img, compactness=30, n_segments=6) labels = np.unique(label_img);print(labels) gray = rgb2gray(img); for label in labels: if(label not in labels_to_keep): logicalIndex = (label_img == label) gray[logicalIndex] = 0; Display.show_image(gray) io.imsave("grayy.png", gray)
Example #24
Source File: gui.py From Pic-Numero with MIT License | 5 votes |
def didClickSubmitButton(self, event): print(self.imageFilePath) img = img_as_ubyte(io.imread(CLUSTER_IMAGE_FILENAME)) roi_img = spectral_roi.extract_roi(img, gui_checkbox_handlers.getSelectedClusters()) roi_img_filename = "{}.png".format(Helper.generate_random_id()) io.imsave(roi_img_filename, roi_img) Display.show_image(roi_img, roi_img_filename)
Example #25
Source File: PicNumero.py From Pic-Numero with MIT License | 5 votes |
def blockfunc(block): global img_data # Check if not all zeros if(numpy.any(block)): #io.imsave("Block2/{}.png".format(Helper.generate_random_id()), block) img_data.append(block) ################### COUNTING BY REGRESSION #####################################
Example #26
Source File: basic.py From VAE-Tensorflow with MIT License | 5 votes |
def imwrite(image, path): """Save an [-1.0, 1.0] image.""" iio.imsave(path, im2float(image))
Example #27
Source File: gen_pic.py From uai-sdk with Apache License 2.0 | 5 votes |
def generate(size,char,char_index,save_path,font_path,times): #kernel = np.ones((3,3),np.uint8) #kernel of erode or dilate char=str(char) l_char=len(char) #char=unicode(char,'utf-8') #l_char=len(char) width=l_char*size img = Image.new('RGB',(width,size+20),'white') draw = ImageDraw.Draw(img) #char=unicode(char,'utf-8') #maxsize=min(width/l_char/height,0.8) #minsize=maxsize-0.1 #sizeofchar=np.arange(minsize,maxsize+0.05,0.05) #print(round(width/l_char/height,2),maxsize,minsize) #sizeofchar=[0.4,0.45] #size= sizeofchar[random.randint(0,len(sizeofchar)-1)] font = ImageFont.truetype(font_path,size) draw.text((0,0),char,(0,0,0),font=font) IMG_SAVEPATH = os.path.join(save_path,str(char_index)) if (not os.path.exists(IMG_SAVEPATH)): os.makedirs(IMG_SAVEPATH) rotate = random.randint(-2, 2) img = img.rotate(rotate) img_0 = np.array(img) noise_modes=['gaussian','poisson','salt','pepper'] noise_mode=noise_modes[random.randint(0,len(noise_modes)-1)] img_1 = skimage.util.random_noise(img_0, mode=noise_mode,seed=None, clip=True) #img_2 = cv2.erode(img_0,kernel,iterations = 1) #img_3 = cv2.dilate(img_0,kernel,iterations = 1) #img_3 = skimage.util.random_noise(img_2, mode=noise_mode,seed=None, clip=True) #img_5 = skimage.util.random_noise(img_3, mode=noise_mode,seed=None, clip=True) for index in range(2): io.imsave(os.path.join(IMG_SAVEPATH,str(times)+'_'+str(index)+'.jpg'),eval('img_'+str(index)))
Example #28
Source File: jhamski.py From facial_expressions with Apache License 2.0 | 5 votes |
def save_image(img, name, trans_type): name = os.path.splitext(name)[0] script_dir = os.path.dirname(__file__) full_path_images = os.path.join(script_dir, '../images/', name + "_" + trans_type + '.png') io.imsave(full_path_images, img) #io.imsave(name + "_" + trans_type + '.png', img,) #setup image transformation functions
Example #29
Source File: locate_tissue.py From LiverCancerSeg with MIT License | 5 votes |
def locate_tissue(slides_dir): slide_list = [] svs_file_list = filesystem.find_ext_files(slides_dir, "svs") slide_list.extend(svs_file_list) SVS_file_list = filesystem.find_ext_files(slides_dir, "SVS") slide_list.extend(SVS_file_list) tissue_dir = os.path.join(os.path.dirname(slides_dir), "Visualization/TissueLoc") filesystem.overwrite_dir(tissue_dir) for ind, slide_path in enumerate(slide_list): print("processing {}/{}".format(ind+1, len(slide_list))) # locate tissue contours with default parameters cnts, d_factor = tl.locate_tissue_cnts(slide_path, max_img_size=2048, smooth_sigma=13, thresh_val=0.88, min_tissue_size=120000) cnts = sorted(cnts, key=lambda x: cv2.contourArea(x), reverse=True) # if len(cnts) != 1: # print("There are {} contours in {}".format(len(cnts), os.path.basename(slide_path))) # load slide select_level, select_factor = tl.select_slide_level(slide_path, max_size=2048) wsi_head = pyramid.load_wsi_head(slide_path) slide_img = wsi_head.read_region((0, 0), select_level, wsi_head.level_dimensions[select_level]) slide_img = np.asarray(slide_img)[:,:,:3] slide_img = np.ascontiguousarray(slide_img, dtype=np.uint8) # change not valid poly to convex_hull cnt_arr = cv_cnt_to_np_arr(cnts[0]) cnt_poly = np_arr_to_poly(cnt_arr) if cnt_poly.is_valid == True: valid_cnt = cnts[0].astype(int) else: valid_arr = poly_to_np_arr(cnt_poly.convex_hull) valid_cnt = np_arr_to_cv_cnt(valid_arr).astype(int) cv2.drawContours(slide_img, [valid_cnt], 0, (0, 255, 0), 8) # overlay and save # cv2.drawContours(slide_img, cnts, 0, (0, 255, 0), 8) tissue_save_name = os.path.splitext(os.path.basename(slide_path))[0] + ".png" tissue_save_path = os.path.join(tissue_dir, tissue_save_name) io.imsave(tissue_save_path, slide_img)
Example #30
Source File: helper_dataset.py From reseg with GNU General Public License v3.0 | 5 votes |
def save_image(outpath, img): import errno try: os.makedirs(os.path.dirname(outpath)) except OSError as e: if e.errno != errno.EEXIST: raise e pass imsave(outpath, img)