Python torch.optim.RMSprop() Examples
The following are 30
code examples of torch.optim.RMSprop().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.optim
, or try the search function
.
Example #1
Source File: debug_atari.py From cherry with Apache License 2.0 | 6 votes |
def main(num_steps=10000000, env_name='PongNoFrameskip-v4', # env_name='BreakoutNoFrameskip-v4', seed=42): th.set_num_threads(1) random.seed(seed) th.manual_seed(seed) np.random.seed(seed) env = gym.make(env_name) env = envs.VisdomLogger(env, interval=10) env = envs.OpenAIAtari(env) env = envs.Torch(env) env = envs.Runner(env) env.seed(seed) policy = NatureCNN(env) optimizer = optim.RMSprop(policy.parameters(), lr=LR, alpha=0.99, eps=1e-5) get_action = lambda state: get_action_value(state, policy) for step in range(num_steps // A2C_STEPS + 1): # Sample some transitions replay = env.run(get_action, steps=A2C_STEPS) env.log('random', random.random())
Example #2
Source File: utility.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def make_optimizer(args, my_model): trainable = filter(lambda x: x.requires_grad, my_model.parameters()) if args.optimizer == 'SGD': optimizer_function = optim.SGD kwargs = {'momentum': args.momentum} elif args.optimizer == 'ADAM': optimizer_function = optim.Adam kwargs = { 'betas': args.betas, 'eps': args.epsilon } elif args.optimizer == 'RMSprop': optimizer_function = optim.RMSprop kwargs = {'eps': args.epsilon} kwargs['lr'] = args.lr kwargs['weight_decay'] = args.weight_decay return optimizer_function(trainable, **kwargs)
Example #3
Source File: utility.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def make_optimizer(args, my_model): trainable = filter(lambda x: x.requires_grad, my_model.parameters()) if args.optimizer == 'SGD': optimizer_function = optim.SGD kwargs = {'momentum': args.momentum} elif args.optimizer == 'ADAM': optimizer_function = optim.Adam kwargs = { 'betas': args.betas, 'eps': args.epsilon } elif args.optimizer == 'RMSprop': optimizer_function = optim.RMSprop kwargs = {'eps': args.epsilon} kwargs['lr'] = args.lr kwargs['weight_decay'] = args.weight_decay return optimizer_function(trainable, **kwargs)
Example #4
Source File: utility.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def make_optimizer(args, my_model): trainable = filter(lambda x: x.requires_grad, my_model.parameters()) if args.optimizer == 'SGD': optimizer_function = optim.SGD kwargs = {'momentum': args.momentum} elif args.optimizer == 'ADAM': optimizer_function = optim.Adam kwargs = { 'betas': args.betas, 'eps': args.epsilon } elif args.optimizer == 'RMSprop': optimizer_function = optim.RMSprop kwargs = {'eps': args.epsilon} kwargs['lr'] = args.lr kwargs['weight_decay'] = args.weight_decay return optimizer_function(trainable, **kwargs)
Example #5
Source File: train_helpers.py From margipose with Apache License 2.0 | 6 votes |
def learning_schedule(params, optim_algorithm, lr, milestones, gamma): """Creates an optimizer and learning rate scheduler. Args: params: Model parameters optim_algorithm (str): Name of the optimisation algorithm lr: Initial learning rate milestones: Schedule milestones gamma: Learning rate decay factor Returns: optim.lr_scheduler._LRScheduler: Learning rate scheduler """ if optim_algorithm == 'sgd': optimiser = optim.SGD(params, lr=lr) elif optim_algorithm == 'nesterov': optimiser = optim.SGD(params, lr=lr, momentum=0.8, nesterov=True) elif optim_algorithm == 'rmsprop': optimiser = optim.RMSprop(params, lr=lr) else: raise Exception('unrecognised optimisation algorithm: ' + optim_algorithm) return optim.lr_scheduler.MultiStepLR(optimiser, milestones=milestones, gamma=gamma)
Example #6
Source File: utils.py From Landmark2019-1st-and-3rd-Place-Solution with Apache License 2.0 | 6 votes |
def get_optim(params, target): assert isinstance(target, nn.Module) or isinstance(target, dict) if isinstance(target, nn.Module): target = target.parameters() if params['optimizer'] == 'sgd': optimizer = optim.SGD(target, params['lr'], weight_decay=params['wd']) elif params['optimizer'] == 'momentum': optimizer = optim.SGD(target, params['lr'], momentum=0.9, weight_decay=params['wd']) elif params['optimizer'] == 'nesterov': optimizer = optim.SGD(target, params['lr'], momentum=0.9, weight_decay=params['wd'], nesterov=True) elif params['optimizer'] == 'adam': optimizer = optim.Adam(target, params['lr'], weight_decay=params['wd']) elif params['optimizer'] == 'amsgrad': optimizer = optim.Adam(target, params['lr'], weight_decay=params['wd'], amsgrad=True) elif params['optimizer'] == 'rmsprop': optimizer = optim.RMSprop(target, params['lr'], weight_decay=params['wd']) else: raise ValueError return optimizer
Example #7
Source File: utility.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def make_optimizer(args, my_model): trainable = filter(lambda x: x.requires_grad, my_model.parameters()) if args.optimizer == 'SGD': optimizer_function = optim.SGD kwargs = {'momentum': args.momentum} elif args.optimizer == 'ADAM': optimizer_function = optim.Adam kwargs = { 'betas': args.betas, 'eps': args.epsilon } elif args.optimizer == 'RMSprop': optimizer_function = optim.RMSprop kwargs = {'eps': args.epsilon} kwargs['lr'] = args.lr kwargs['weight_decay'] = args.weight_decay return optimizer_function(trainable, **kwargs)
Example #8
Source File: coma_learner.py From pymarl with Apache License 2.0 | 6 votes |
def __init__(self, mac, scheme, logger, args): self.args = args self.n_agents = args.n_agents self.n_actions = args.n_actions self.mac = mac self.logger = logger self.last_target_update_step = 0 self.critic_training_steps = 0 self.log_stats_t = -self.args.learner_log_interval - 1 self.critic = COMACritic(scheme, args) self.target_critic = copy.deepcopy(self.critic) self.agent_params = list(mac.parameters()) self.critic_params = list(self.critic.parameters()) self.params = self.agent_params + self.critic_params self.agent_optimiser = RMSprop(params=self.agent_params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) self.critic_optimiser = RMSprop(params=self.critic_params, lr=args.critic_lr, alpha=args.optim_alpha, eps=args.optim_eps)
Example #9
Source File: optimizer.py From SegmenTron with Apache License 2.0 | 6 votes |
def get_optimizer(model): parameters = _get_paramters(model) opt_lower = cfg.SOLVER.OPTIMIZER.lower() if opt_lower == 'sgd': optimizer = optim.SGD( parameters, lr=cfg.SOLVER.LR, momentum=cfg.SOLVER.MOMENTUM, weight_decay=cfg.SOLVER.WEIGHT_DECAY) elif opt_lower == 'adam': optimizer = optim.Adam( parameters, lr=cfg.SOLVER.LR, eps=cfg.SOLVER.EPSILON, weight_decay=cfg.SOLVER.WEIGHT_DECAY) elif opt_lower == 'adadelta': optimizer = optim.Adadelta( parameters, lr=cfg.SOLVER.LR, eps=cfg.SOLVER.EPSILON, weight_decay=cfg.SOLVER.WEIGHT_DECAY) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop( parameters, lr=cfg.SOLVER.LR, alpha=0.9, eps=cfg.SOLVER.EPSILON, momentum=cfg.SOLVER.MOMENTUM, weight_decay=cfg.SOLVER.WEIGHT_DECAY) else: raise ValueError("Expected optimizer method in [sgd, adam, adadelta, rmsprop], but received " "{}".format(opt_lower)) return optimizer
Example #10
Source File: qtran_learner.py From pymarl with Apache License 2.0 | 6 votes |
def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.params = list(mac.parameters()) self.last_target_update_episode = 0 self.mixer = None if args.mixer == "qtran_base": self.mixer = QTranBase(args) elif args.mixer == "qtran_alt": raise Exception("Not implemented here!") self.params += list(self.mixer.parameters()) self.target_mixer = copy.deepcopy(self.mixer) self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) # a little wasteful to deepcopy (e.g. duplicates action selector), but should work for any MAC self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1
Example #11
Source File: agent_deal.py From NeuralDialog-LaRL with Apache License 2.0 | 6 votes |
def __init__(self, model, corpus, args, name): super(RlAgent, self).__init__(model, corpus, args, name) # params = [] # params.extend(self.model.goal_encoder.parameters()) # params.extend(self.model.utt_encoder.parameters()) # params.extend(self.model.ctx_encoder.parameters()) # self.opt = optim.SGD( # params, # lr=self.args.rl_lr, # momentum=self.args.momentum, # nesterov=(self.args.nesterov and self.args.momentum > 0)) self.opt = optim.SGD( self.model.parameters(), lr=self.args.rl_lr, momentum=self.args.momentum, nesterov=(self.args.nesterov and self.args.momentum > 0)) # self.opt = optim.Adam(self.model.parameters(), lr=0.01) # self.opt = optim.RMSprop(self.model.parameters(), lr=0.0005) self.all_rewards = [] self.model.train()
Example #12
Source File: agent_task.py From ConvLab with MIT License | 6 votes |
def __init__(self, model, corpus, args, name, tune_pi_only): self.model = model self.corpus = corpus self.args = args self.name = name self.raw_goal = None self.vec_goals_list = None self.logprobs = None print("Do we only tune the policy: {}".format(tune_pi_only)) self.opt = optim.SGD( [p for n, p in self.model.named_parameters() if 'c2z' in n or not tune_pi_only], lr=self.args.rl_lr, momentum=self.args.momentum, nesterov=(self.args.nesterov and self.args.momentum > 0)) # self.opt = optim.Adam(self.model.parameters(), lr=0.01) # self.opt = optim.RMSprop(self.model.parameters(), lr=0.0005) self.all_rewards = [] self.all_grads = [] self.model.train()
Example #13
Source File: utility.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def make_optimizer(args, my_model): trainable = filter(lambda x: x.requires_grad, my_model.parameters()) if args.optimizer == 'SGD': optimizer_function = optim.SGD kwargs = {'momentum': args.momentum} elif args.optimizer == 'ADAM': optimizer_function = optim.Adam kwargs = { 'betas': args.betas, 'eps': args.epsilon } elif args.optimizer == 'RMSprop': optimizer_function = optim.RMSprop kwargs = {'eps': args.epsilon} kwargs['lr'] = args.lr kwargs['weight_decay'] = args.weight_decay return optimizer_function(trainable, **kwargs)
Example #14
Source File: model_torch.py From machine-learning-for-programming-samples with MIT License | 6 votes |
def _make_optimizer(self): if self.optimizer is not None: return # Also prepare optimizer: optimizer_name = self.hyperparameters["optimizer"].lower() if optimizer_name == "sgd": self.optimizer = optim.SGD( params=self.parameters(), lr=self.hyperparameters["learning_rate"], momentum=self.hyperparameters["momentum"], ) elif optimizer_name == "rmsprop": self.optimizer = optim.RMSprop( params=self.parameters(), lr=self.hyperparameters["learning_rate"], alpha=self.params["learning_rate_decay"], momentum=self.params["momentum"], ) elif optimizer_name == "adam": self.optimizer = optim.Adam( params=self.parameters(), lr=self.hyperparameters["learning_rate"], ) else: raise Exception('Unknown optimizer "%s".' % (self.params["optimizer"]))
Example #15
Source File: pg.py From tatk with Apache License 2.0 | 6 votes |
def __init__(self, is_train=False, dataset='Multiwoz'): with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json'), 'r') as f: cfg = json.load(f) self.save_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), cfg['save_dir']) self.save_per_epoch = cfg['save_per_epoch'] self.update_round = cfg['update_round'] self.optim_batchsz = cfg['batchsz'] self.gamma = cfg['gamma'] self.is_train = is_train if is_train: init_logging_handler(cfg['log_dir']) if dataset == 'Multiwoz': voc_file = os.path.join(root_dir, 'data/multiwoz/sys_da_voc.txt') voc_opp_file = os.path.join(root_dir, 'data/multiwoz/usr_da_voc.txt') self.vector = MultiWozVector(voc_file, voc_opp_file) self.policy = MultiDiscretePolicy(self.vector.state_dim, cfg['h_dim'], self.vector.da_dim).to(device=DEVICE) # self.policy = MultiDiscretePolicy(self.vector.state_dim, cfg['h_dim'], self.vector.da_dim).to(device=DEVICE) if is_train: self.policy_optim = optim.RMSprop(self.policy.parameters(), lr=cfg['lr'])
Example #16
Source File: train_utils.py From gnn-model-explainer with Apache License 2.0 | 6 votes |
def build_optimizer(args, params, weight_decay=0.0): filter_fn = filter(lambda p : p.requires_grad, params) if args.opt == 'adam': optimizer = optim.Adam(filter_fn, lr=args.lr, weight_decay=weight_decay) elif args.opt == 'sgd': optimizer = optim.SGD(filter_fn, lr=args.lr, momentum=0.95, weight_decay=weight_decay) elif args.opt == 'rmsprop': optimizer = optim.RMSprop(filter_fn, lr=args.lr, weight_decay=weight_decay) elif args.opt == 'adagrad': optimizer = optim.Adagrad(filter_fn, lr=args.lr, weight_decay=weight_decay) if args.opt_scheduler == 'none': return None, optimizer elif args.opt_scheduler == 'step': scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.opt_decay_step, gamma=args.opt_decay_rate) elif args.opt_scheduler == 'cos': scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.opt_restart) return scheduler, optimizer
Example #17
Source File: deep_q_network.py From Deep-Q-Learning-Paper-To-Code with MIT License | 6 votes |
def __init__(self, lr, n_actions, name, input_dims, chkpt_dir): super(DeepQNetwork, self).__init__() self.checkpoint_dir = chkpt_dir self.checkpoint_file = os.path.join(self.checkpoint_dir, name) self.conv1 = nn.Conv2d(input_dims[0], 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 64, 3, stride=1) fc_input_dims = self.calculate_conv_output_dims(input_dims) self.fc1 = nn.Linear(fc_input_dims, 512) self.fc2 = nn.Linear(512, n_actions) self.optimizer = optim.RMSprop(self.parameters(), lr=lr) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self.to(self.device)
Example #18
Source File: deep_q_network.py From Deep-Q-Learning-Paper-To-Code with MIT License | 6 votes |
def __init__(self, lr, n_actions, name, input_dims, chkpt_dir): super(DeepQNetwork, self).__init__() self.checkpoint_dir = chkpt_dir self.checkpoint_file = os.path.join(self.checkpoint_dir, name) self.conv1 = nn.Conv2d(input_dims[0], 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 64, 3, stride=1) fc_input_dims = self.calculate_conv_output_dims(input_dims) self.fc1 = nn.Linear(fc_input_dims, 512) self.fc2 = nn.Linear(512, n_actions) self.optimizer = optim.RMSprop(self.parameters(), lr=lr) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self.to(self.device)
Example #19
Source File: deep_q_network.py From Deep-Q-Learning-Paper-To-Code with MIT License | 6 votes |
def __init__(self, lr, n_actions, name, input_dims, chkpt_dir): super(DeepQNetwork, self).__init__() self.checkpoint_dir = chkpt_dir self.checkpoint_file = os.path.join(self.checkpoint_dir, name) self.conv1 = nn.Conv2d(input_dims[0], 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 64, 3, stride=1) fc_input_dims = self.calculate_conv_output_dims(input_dims) self.fc1 = nn.Linear(fc_input_dims, 512) self.fc2 = nn.Linear(512, n_actions) self.optimizer = optim.RMSprop(self.parameters(), lr=lr) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self.to(self.device)
Example #20
Source File: deep_q_network.py From Deep-Q-Learning-Paper-To-Code with MIT License | 6 votes |
def __init__(self, lr, n_actions, name, input_dims, chkpt_dir): super(DuelingDeepQNetwork, self).__init__() self.checkpoint_dir = chkpt_dir self.checkpoint_file = os.path.join(self.checkpoint_dir, name) self.conv1 = nn.Conv2d(input_dims[0], 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 64, 3, stride=1) fc_input_dims = self.calculate_conv_output_dims(input_dims) self.fc1 = nn.Linear(fc_input_dims, 512) self.V = nn.Linear(512, 1) self.A = nn.Linear(512, n_actions) self.optimizer = optim.RMSprop(self.parameters(), lr=lr) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self.to(self.device)
Example #21
Source File: deep_q_network.py From Deep-Q-Learning-Paper-To-Code with MIT License | 6 votes |
def __init__(self, lr, n_actions, name, input_dims, chkpt_dir): super(DuelingDeepQNetwork, self).__init__() self.checkpoint_dir = chkpt_dir self.checkpoint_file = os.path.join(self.checkpoint_dir, name) self.conv1 = nn.Conv2d(input_dims[0], 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 64, 3, stride=1) fc_input_dims = self.calculate_conv_output_dims(input_dims) self.fc1 = nn.Linear(fc_input_dims, 1024) self.fc2 = nn.Linear(1024, 512) self.V = nn.Linear(512, 1) self.A = nn.Linear(512, n_actions) self.optimizer = optim.RMSprop(self.parameters(), lr=lr) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self.to(self.device)
Example #22
Source File: train.py From kaggle_carvana_segmentation with MIT License | 6 votes |
def __init__(self, fold, config, metrics): logdir = os.path.join('..', 'logs', config.folder, 'fold{}'.format(fold)) os.makedirs(logdir, exist_ok=True) self.config = config self.fold = fold self.model = models[config.network](num_classes=1, num_channels=config.num_channels) if self.config.optimizer == 'adam': self.optimizer = optim.Adam(self.model.parameters(), lr=config.lr) else: self.optimizer = optim.RMSprop(self.model.parameters(), lr=config.lr) self.model = nn.DataParallel(self.model).cuda() self.criterion = losses[config.loss]().cuda() self.writer = SummaryWriter(logdir) self.metrics = metrics self.devices = os.getenv('CUDA_VISIBLE_DEVICES', '0') if os.name == 'nt': self.devices = ','.join(str(d + 5) for d in map(int, self.devices.split(','))) self.cache = None self.cached_loss = 0 self.hard_mining = True
Example #23
Source File: utils.py From VSUA-Captioning with MIT License | 6 votes |
def build_optimizer(params, opt): if opt.optim == 'rmsprop': return optim.RMSprop(params, opt.learning_rate, opt.optim_alpha, opt.optim_epsilon, weight_decay=opt.weight_decay) elif opt.optim == 'adagrad': return optim.Adagrad(params, opt.learning_rate, weight_decay=opt.weight_decay) elif opt.optim == 'sgd': return optim.SGD(params, opt.learning_rate, weight_decay=opt.weight_decay) elif opt.optim == 'sgdm': return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay) elif opt.optim == 'sgdmom': return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay, nesterov=True) elif opt.optim == 'adam': return optim.Adam(params, opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay) else: raise Exception("bad option opt.optim: {}".format(opt.optim)) # batch_size * feat_size -> (batch_size * count) * feat_size
Example #24
Source File: a2c_acktr.py From gym-miniworld with Apache License 2.0 | 6 votes |
def __init__(self, actor_critic, value_loss_coef, entropy_coef, lr=None, eps=None, alpha=None, max_grad_norm=None, acktr=False): self.actor_critic = actor_critic self.acktr = acktr self.value_loss_coef = value_loss_coef self.entropy_coef = entropy_coef self.max_grad_norm = max_grad_norm if acktr: self.optimizer = KFACOptimizer(actor_critic) else: self.optimizer = optim.RMSprop( actor_critic.parameters(), lr, eps=eps, alpha=alpha)
Example #25
Source File: a2c_acktr.py From dal with MIT License | 6 votes |
def __init__(self, actor_critic, value_loss_coef, entropy_coef, lr=None, eps=None, alpha=None, max_grad_norm=None, acktr=False): self.actor_critic = actor_critic self.acktr = acktr self.value_loss_coef = value_loss_coef self.entropy_coef = entropy_coef self.max_grad_norm = max_grad_norm if acktr: self.optimizer = KFACOptimizer(actor_critic) else: self.optimizer = optim.RMSprop( actor_critic.parameters(), lr, eps=eps, alpha=alpha)
Example #26
Source File: optimizer.py From amortized-variational-filtering with MIT License | 6 votes |
def __init__(self, opt_name, parameters, lr, clip_grad_norm=None): opt_name = opt_name.lower().replace('_', '').strip() if opt_name == 'sgd': optimizer = opt.SGD elif opt_name == 'rmsprop': optimizer = opt.RMSprop elif opt_name == 'adam': optimizer = opt.Adam self.parameters = list(parameters) if self.parameters == []: # in case we're not using the optimizer self.parameters = [Variable(torch.zeros(1), requires_grad=True)] self.opt = optimizer(self.parameters, lr=lr) self.clip_grad_norm = clip_grad_norm self.stored_grads = None self.zero_stored_grad() self._n_iter = 0
Example #27
Source File: agent_deal.py From NeuralDialog-LaRL with Apache License 2.0 | 6 votes |
def __init__(self, model, corpus, args, name, use_latent_rl=True): super(LatentRlAgent, self).__init__(model, corpus, args, name) # params = [] # params.extend(self.model.goal_encoder.parameters()) # params.extend(self.model.utt_encoder.parameters()) # params.extend(self.model.ctx_encoder.parameters()) # self.opt = optim.SGD( # params, # lr=self.args.rl_lr, # momentum=self.args.momentum, # nesterov=(self.args.nesterov and self.args.momentum > 0)) self.opt = optim.SGD( self.model.parameters(), lr=self.args.rl_lr, momentum=self.args.momentum, nesterov=(self.args.nesterov and self.args.momentum > 0)) # self.opt = optim.Adam(self.model.parameters(), lr=0.01) # self.opt = optim.RMSprop(self.model.parameters(), lr=0.0005) self.use_latent_rl = use_latent_rl self.all_rewards = [] self.model.train()
Example #28
Source File: utils.py From AoANet with MIT License | 5 votes |
def build_optimizer(params, opt): if opt.optim == 'rmsprop': return optim.RMSprop(params, opt.learning_rate, opt.optim_alpha, opt.optim_epsilon, weight_decay=opt.weight_decay) elif opt.optim == 'adagrad': return optim.Adagrad(params, opt.learning_rate, weight_decay=opt.weight_decay) elif opt.optim == 'sgd': return optim.SGD(params, opt.learning_rate, weight_decay=opt.weight_decay) elif opt.optim == 'sgdm': return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay) elif opt.optim == 'sgdmom': return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay, nesterov=True) elif opt.optim == 'adam': return optim.Adam(params, opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay) else: raise Exception("bad option opt.optim: {}".format(opt.optim))
Example #29
Source File: CNN_ModelContainer.py From Deep_Visual_Inertial_Odometry with MIT License | 5 votes |
def __init__(self, model, wName='Weights/main'): super().__init__(model, wName) self.bn = 0 self.optimizer = optim.RMSprop(self.model.parameters(), lr=10 ** -3, weight_decay=10 ** -2) self.loss = MahalanobisLoss(isSeries=False)
Example #30
Source File: utils.py From DeMa-BWE with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_optimizer(s): """ Parse optimizer parameters. Input should be of the form: - "sgd,lr=0.01" - "adagrad,lr=0.1,lr_decay=0.05" """ if "," in s: method = s[:s.find(',')] optim_params = {} for x in s[s.find(',') + 1:].split(','): split = x.split('=') assert len(split) == 2 assert re.match("^[+-]?(\d+(\.\d*)?|\.\d+)$", split[1]) is not None optim_params[split[0]] = float(split[1]) else: method = s optim_params = {} if method == 'adadelta': optim_fn = optim.Adadelta elif method == 'adagrad': optim_fn = optim.Adagrad elif method == 'adam': optim_fn = optim.Adam elif method == 'adamax': optim_fn = optim.Adamax elif method == 'asgd': optim_fn = optim.ASGD elif method == 'rmsprop': optim_fn = optim.RMSprop elif method == 'rprop': optim_fn = optim.Rprop elif method == 'sgd': optim_fn = optim.SGD assert 'lr' in optim_params else: raise Exception('Unknown optimization method: "%s"' % method) return optim_fn, optim_params